
NASA Contractor Report 3553 

Mathematical Models 
for the Synthesis and 
Optimization of Spiral 
Bevel Gear Tooth Surfaces 

F. L. Litvin, Pernez Rahman, 
and Robert N. Goldrich 

GRANT NAG-348 
JUNE 1982 



NASA Contractor Report 3553 

Mathematical Models 
for the Synthesis and 
Optimization of Spiral 
Bevel Gear Tooth Surfaces 

F. L. Litvin, Pernez Rahman, 
and Robert N. Goldrich 
University of Illinois at Chicago Circle 
Chicago, Illinois 

Prepared for 
Lewis Research Center 
under Grant NAG-348 

National Aeronautics 
and Space Administration 

Scientific and Technical 
Information Office 

1982 





-. - -_., . 

TABLE OF CONTENTS 

Page 

SUMMARY ............................................................. 

1. BASIC METHODS OF INVESTIGATION ................................... 

1.1 General Kinematic Relations ................................. 

1.2 Transfer Velocity ........................................... 

1.3 Relative Velocity of Contact Points ......................... 

1.4 The General Law of Gearings ................................. 

1.5 Contact Lines, Surface of Action, The Enveloped Surface ..... 

1.6 Relations Between Principal Curvatures and Directions of 
Two Surfaces Being in Meshing ............................... 

1.7 Contact Ellipse ............................................. 

2. GEOMETRY OF SPIRAL BEVEL GEARS ................................... 

2.1 Introduction ................................................ 

2.2 Geometry I: The Line of Action ............................. 

2.3 Geometry I: Contact Point Path on Surface Ci (i=1.2) ....... 

2.4 Geometry I: The Instantaneous Contact Ellipse .............. 

2.5 Geometry II: Generating Surfaces ........................... 

2.6 Geometry II: The Line of Action ............................ 

2.7 Geometry II: The Instantaneous Contact Ellipse ............. 

3. METHODS TO CALCULATE GEAR-DRIVE KINEMATICAL ERRORS ............... 

3.1 Introduction ................................................ 

3.2 The Computer Method ......................................... 

3.3 Aprroximate Method .......................................... 

3.4 Kinematical Errors of Spiral Bevel Gears Induced by Their 
Eccentricity ................................................ 

3.5 Kinematical Errors Induced by Misalignment .................. 

4. CONCLUSION ....................................................... 

LIST OF SYMBOLS ...................................................... 

1 

4 

4 

10 

14 

18 

24 

37 

50 

61 

61 

62 

71 

76 

80 

84 

85 

88 

88 

88 

93 

99 

106 

112 

113 

REFERENCES........ . . . . ..~.........0.....~............................ 118 

iii 

- 



SLMIARY 

Spiral bevel gears have widespread applications in the transmission 

systems of helicopters, airplanes, trucks, automobiles, tanks and many other 

machines. Major requirements in the field of helicopter transmissions are: 

(a) improved life and reliability, (b) reduction in overall weight (i.e., 

a large power to weight ratio) without compromising the strength and 

efficiency during the service life, (c) reduction in the transmission noise. 

Spiral bevel gears which used in practice are normally generated with 

approximately conjugate tooth surfaces by using special machine and tool 

settings. Therefore, designers and researchers cannot solve the Hertzian 

contact stress problem and define the dynamic capacity and contact fatigue 

life until these settings are calculated. The geometry of gear tooth sur- 

faces is very complicated and the determination of principal curvatures and 

principal directions of tooth surfaces for Hertzian problem is a very hard 

problem. 

The first two parts of this report deal with tooth contact geometry. 

In this report, a novel approach to the study of the geometry of spiral 

bevel gears and to their rational design is proposed. The nonconjugate 

tooth surfaces of spiral bevel gears are, in theory, replaced (or approxi- 

mated) by conjugated tooth surfaces. These surfaces can be generated: 

(a) by two conical surfaces which are rigidly connected with each other and 

are in linear tangency along a common generatrix of tool cones and (b) by 

a conical surface and a surface of revolution which are in linear tangency 

along a circle. 



We can imagine that four surfaces are in mesh: two of them are tool 

surfaces C 1 
and C 2' G1 and G 2 are gear tooth surfaces. Surfaces 

=1 

and G 1 are in linear contact and the contact line moves along the surfaces 

'i and G i in the process of meshing. Surfaces Cl and C2 are rigidly 

connected and move in the process of meshing as a whole body. Surfaces Gl 

and G2 are in point contact and the point of their contact moves along 

the surfaces in the process of meshing. Surfaces Gl and G2 are hypothet- 

ical conjugate tooth surfaces which approximate the actual nonconjugate 

tooth surfaces to within manufacturing tolerances in the neighborhood of any 

path contact point. It is important to note that these conjugate tooth 

surfaces are not practical to use and, due to a constant tooth depth, may be 

undercut partly. However, the dynamic design of the gears is primarily 

dependent upon the nature of tooth surfaces in the neighborhood of the path 

of contact, and we propose to use these hypothetical conjugate surfaces for 

this purpose. 

Although these hypothetical conjugate surfaces are simpler than the 

actual ones, the determination of their principal curvatures and directions 

is still a complicated problem. Therefore, a new approach to the solution 

of these is proposed in this report. In this approach, direct relationships 

between the principal curvatures and directions of the tool surface and 

those of the generated gear surface are obtained. Therefore, the principal 

curvatures and directions of gear tooth surface are obtained without using 

the complicated equations of these surfaces. 

The proposed report utilizes effective methods of kinematic and 

analytic geometry (e.g., matrices for coordinate transformation, kinematic 

relations between motions of contact point and unit normal vector of two 

surfaces, etc.). With the aid of these analytical tools, the Hertzian 
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contact problem for conjugate tooth surfaces can be solved. These results 
P 

are eventually useful in determining compressive load capacity and surface Y 

fatigue life of spiral bevel gears. 

In the third part of this report, a general theory of kinematical 

errors exerted by manufacturing and assembly errors is developed. This 

theory is used to determine the analytical relationship between gear 

misalignments and kinematical errors. In the past, the influence of manu- 

facturing errors and assembly errors on two surfaces in contact could be 

determined only by using numerical methods. 



. . . . 

1. BASIC METHODS OF INVESTIGATION 

1.1 General Kinematic Relations 

Three coordinate systems rigidly connected with mechanism links are 

considered. One of these - Sf(Xf~Yf~ Zf> - is rigidly connected with the 

frame. The other two - Si(xi,yi,zi) (i=1,2) are rigidly connected with 

the driving and driven gears. 

The tooth surface is represented by vector-function 

Si("i,ei) ' C1 (u,e> E G (1.1.1) 

where (ui,Bi) are surface coordinates. The symbol C1 means that function 

(1.1.1) has continuous partial derivatives of first order with respect to 

all its arguments. The designation EG means that 

belong to the area G. 

surface coordinates 

The normal vector Ni and unit normal vector 

the following equations: 

ar. ar. 
N. =LLx2. 
-1 au. ae 

1 i 

ci are represented by 

(1.1.2) 

(1.1.3) 

It is assumed that surface Ci is a regular one and fJi # 0. 

Surface Ci and its unit normal vector may be represented in coordinate 

system Sf by equations 

Ef 
W = $1 (u i,Oi,$i) (i=1,2) (u.,ei) E G, @~l)<@i<$!z) 1 1 (1.1.4) 

"f 
(3 = $1 (u . ,eisOil (i=1,21 (1.1.5) 

1 

Equations (1.1.4) and (1.1.5) can be obtained with the matrix equations 

[rSi)l = [MfiI [riI (1.1.6) 

[nii)] = [Lfi] [n.] (1.1.7) 
1 

Matrix [Mfi] is represented by 
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[MfiI = a21 a22 a23 a24 

a31 a32 a33 a34 

0 0 0 1 

where x f 
(Oi), y Co,) 

f and zf('i) are "new" coordinates of the "old" origin-- 

the coordinates of origin Oi of the coordinate system S. as defined in 1 

coordinate system S f' 

The column matrix [ri] is represented by 

'i 

[ri] = zi 

1 . i 

X. 
1 

(1.1.9) 

Here the coordinates of a point M are homogeneous coordinates: M(xi,yi,zi,l) 

Matrix [Lfi] is a sub-matrix of [Mfi] 

1 
all 

= 
a21 

a31 

= 

cos (Xf?Xi> cos (xf:Yi) cos(xf:zi) 

cos (y,$> cos (Yf?Yi> COS(Yf3Zil (1.1.10) 

cos(z ";x fi ) cos (zf:yi) COS(Zfl:Zi) 
1 

The column matrix [nil is represented by 
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(1.1.11) 

In the process of motion tooth surfaces Cl and C2 must be in con- 

tinuoustangency. Therefore, the following equations are to be observed 

rf 
(11 (ul,e19~1) = ~f(21(u2.e,~~2~ (1.1.12) 

,nf 
(11 op,~~,~ = ~f(21(u2.e2,42)3 (1.1.13) 

where 4, and 9, are the angles of rotation of the driving and driven gears, 

respectively. Equation (1.1.12) expresses that surfaces Cl and C2 have 

common points. Equation (1.1.13) expresses that surfaces Cl and C2 have 

common unit normals at their common points. Together, equation systems 

(1.1.12) and (1.1.13) express that surfaces Cl and C2 are in tangency. 

Figure 1.1.1 shows surfaces Cl and X2 which are in tangency at point M. 

Plane T is tangent to these surfaces at their point of tangency, point M. 

(1) Position vectors gf and gj2) drawn from the origin Of of coordinate 

system Sf (xf .yf, zf> coincide with each other at point M. At this point 

(11 the unit normal vectors cf and ci2) coincide, too. 

vector equations (1.1.12) and (1.1.13) yield the following six scalar 

equations 

Xf 
(11 (ul,eldal) = Xf (2) (u2a2d2) 

Yf 
(1) (u1,e1d4q = Yf(21(u29~2y42) 

(1.1.14) 

(1.1.15) 

Zf 
(11 0p,,~,1 = Zf(*h2~e2.~,) (1.1.16) 

n (l)(u 
X 

,,e,,Q,) = n (*)(U2'e2d+,) 
X 

nY 
(11 (ul,el,q = ny(21(u2,e2,~21 

(1.1.17) 

(1.1.18) 

n (l)(u ,,e,,+,) = n (2)(u2se2.~2~ (1.1.19) 
2 Z 
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FIG. 1.1.1 

Contacting Tooth Surfaces 
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Scalar equations (1.1.14)- (1.1.19) can be represented as 

fk(u1,el,(Pl,u2,e2,~2) = 0 (k=1,2,...,6) (1.1.20) 

But three equations (1.1.17) - (1.1.19) of the system (1.1.14) - (1.1.19) 

can provide only two independent equations because n (11 
-.f and ef(2) are unit 

vectors. Therefore, lzf (1) 1 = ]"f(2) 1 and if two projections of each unit 

vector are equal then the third projections must be equal, too. Con- 

sequently, vector equations (1.1.12) and (1.1.13) yield a system of only 

five independent equations: 

fi (u 13e1+u2~e2,42) = 0 (i=1,2,.5,4,5) (1.1.21) 

It is assumed that 

(fl'f2 f3'f4'f5) E cl (1.1.22) , 
In other words, it is assumed that functions fi(i=1,...,5) have with respect 

to all arguments continuous partial derivatives of first order at least. 

It is known that the instantaneous contact of tooth surfaces can be a 

linear contact (along a spatial curve, in general) or a point contact. Let 

us suppose that the system of equations (1.1.20) is satisfied at a point MO 

by a set of parameters 

P = ~~10,~1~,~1~,~20,~20,~20~ (1.1.23) 

If link 1 is the input and tooth surfaces are in contact point in the neigh- 

borhood of M, a system of functions 

~~2~~1~,~,~~1~~~1~~1~~~2~~1~~~2~~1~~ E cl 

must exist in the neighborhood of M,. This requirement will be satisfied 

if at point M, the following inequality is observed 

Here : afl af, 8fl af, af, 
-- --- 

DUl,f2,f3~f4~f5) au1 ae, au2 ae2 w, 
______---------- ---- 

D('J 1'~1'u2'~2'~21 = af5 af5 af5 af5 af5 
--- -- au, ae, au2 ae2 aa, 

(1.1.24) 

(1.1.25) 

is the Jacobian of system (1.1.20) 
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Inequality (1.1.24) indicates that the tooth surfaces are in contact at a 

point. If the inequality (1.1.24) becomes an equality this indicates that 

surfaces contact each other along a line. 

It results from the continuity of surface contact that 

drf(')(u ,,~,,~,I = d'f(21(u2.e2s421 (1.1.26) 

dnf(')(u ,++,> = dnf(21(u2,e2,$2) (1.1.27) 

or that 

d&l) dr(2) 
dt (ul'el~~l) = g (u2d32’tJ2) (1.1.28) 

(1.1.29) 

Let us designate d:g) by xi:', and dnki) by i&ii (i-=1,2). Here: $ii is 

dt dt 

the velocity of contact point in the absolute motion (with respect to the 

frme) ; 2abs is the velocity of the end of unit normal in absolute motion 

(with respect to the frame). 

The velocity of absolute motion can be represented as a sum of two 

components: (a) velocity of transfer motion-together with the surface; and 

(b) velocity of a relative motion- relative to the surface. Conse- 

quently, 

(1) = v(ll 
?abs -tr- 

-tr -r 

Equations (l.l.lj), (1.1.13), (1.1.30) and (1.1.31) yield 

9 
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(1.1.32) 



I 
J 

. ii) = 
ntr 

anti) d$i 

a; 
- (i> 

an(i) du. anti) de. 
--n 1+- 1 

i dt ' -r = c dt %i$- dt 

Due to continuity of tangency 

vm = 
-abs 

p 
-abs' 

fp) = fpl 
-.abs -abs 

Equations (1.1.30), (1.1.31) and (1.1.34) yield 

(1) (1) = vw 
Vtr + Vr -tr + yZ2) 

#I + f) (1) = $21 
-.tr -r -tr 

+ $2’ 

(1.1.33) 

(1.1.34) 

(1.1.35) 

(1.1.36) 

Equations (1.1.34) and (1.1.35) were proposed by F. Litvin. On the basis of 

these equations important problems in the theory of gearings, such 

as problem of tooth-nonundercutting, relations between curvatures of two 

surfaces in mesh, and the problem of kinematical errors of gear drives caused 

by errors of manufacturing and assemblage, were solved. 

1.2 Transfer Velocity 

In addition to equation (1.1.32), transfer velocity may be defined in 

a kinematical way, too. 

Figure 1.2.1 shows a tooth surface Ci of gear i. The gear rotates 

(i) with angular velocity wf about axis j-j. Generally, the axis of rotation 

does not pass through the origin Of of coordinate system Sf. 

(i) The sliding vector gf directed along j-j may be substituted by 

the same vector which passes through Of and a vector-moment (i) 
Ef x p, 

where p is a position vector drawn from Of to an arbitrary point on 

the line of action of w (of axis j-j). Figure 2.1 shows vector 

The reduction of the sliding vector "$) passing through point N (il 

by the same vector p passing through Of and vector-moment R -P x p 

is based on the opportunity to represent the transfer velocity by the follow- 

ing two equations: 

v(i) = ?iil x ,(i) 
-tr --f 

(1.2.1) 

10 
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Rotation of Tooth Surface About Axis Not Passing Through Origin 
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(il 
--Vtr 

= p x p + p x p 

It is easy to verify that 

(i) 
Il'f x $1 + $1 x p = p x p, 

(1.2.2) 

(1.2.3) 

taking into account that 

ff = ;‘Tf + ,rci) = DfMcil - qcil = $) - _R$) (1.2.4) 

Consequently, 

The velocity of transfer motion represented by equation (1.2.2) can be 

considered as a resultant velocity of two motions: (a) translation with 

the velocity R(i) 
_ f x ori); and (i> (b) rotation with angular velocity gf 

about axis j'-j' drawn through Of parallel to axis j-j. 

Now, let us define the transfer velocity of the unit normal vector. 

Fig.1.2.2 shows point M (il of the tooth surface C i (i=1,2), the unit normal 

$1 (i> , and the tangent plane T to the surface at point M . The surface 

(i) rotates about axis j-j with angular velocity wf . 

Unlike the previous case, shown in Fig. 1.2.1, let us move the 

sliding vector not to point Of but to point M (iI. Then, the trans- 

fer motion may be represented as a resultant motion with two components: (a) 

of translation with velocity M(i)N(i)x ,ci>. and 
-f ' (b) of rotation about 

axis j'-j' (i> with angular velocity wf . Axis j'-j' is drawn through point 

,(i) parallel to j-j (Fig. 1.2.2);point N(i) is an arbitrarily chosen point 

on axis j-j. 

By translation the unit normal vector n (i) . will be moved with the surface 

point ,(i> parallel to its original direction. So, when surface Ci with 

point Mci) and unit normal n (i> is translated with velocity M (i)N(i)x .ti) 
-f 

vector (i) 
nf does not change its original direction. But the direction of 

.(i) will be changed by rotation about axis jl-j'. 

12 
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FIG. 1.2.2 

Transfer Velocity of Unit Normal Vector 
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Fig. 1.2.2 shows two positions of the unit vector: n (i> is the initial 1 

position and g(i) is the changed position after rotation about axis jl-j1 

by the angle d$(i) = o;';~) dt. The difference 

_ ,ci> = dnci> 
-tr (1.2.5) 

represents the displacement of unit normal by rotation about axis j I-j'. 

Vector dntr is represented by the equation 

dctr = d$(i) x n(i) = (@) x n(i))dt (1.2.6) 

Accordingly, the velocity i,':) of transfer motion may be represented by 

equation 

(1.2.7) 

1.3 Relative Velocity of Contact Points 

Consider tooth surfaces Cl and C2 which are in mesh. Points M(l) 

and M(2) are rigidly connected with their respective surfaces and coincide 

with each other at the point of surface contact. 

Let us designate by (11 ~1 and yi2) the transfer velocities of points 

M(l) and M(2); the subscript "1" means that ytl) and x:2) are 

represented in terms of components of coordinate system Sl rigidly con- 

nected with surface C 1' The relative velocity 

y (21) = (21 
1 Vl - q(l) (1.3.1) 

expresses the velocity of point M (2) with respect to point M(l) defined by 

an observer located at the system S 1 at point M(l) 

Sample problem 1.3.1 

Gears 1 and 2 rotate about crossed axes z1 and z2 with angular 

velocities 0 (11 and E(~) (Fig. 1.3.l);axes zl and z2 make an angle 

Y; the shortest distance between zl and z 2 is C. Points M(l) and Mc2) 

of surfaces C 1 and c2 coincide with each other at the point of contact M. 

14 



FIG. 1.3.1 

Vectors for Computing Relative Velocity at Point M 
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The transfer velocities of points M Cl> and MC21 --- -__i-- al-e represented by the 

equations 

'?l 11 k --1 

01 
@Yl 

Jl) 
Z 

x1 y1 z1 

v1 
(2) = w (21 - - 

1 x OIM + 0102 x o1 (21 = 

21 21 kl I1 '1 kl 

(pl (21 
OYl 

(321 + co21 co21 co21 
xl zl x1 y1 z1 

x1 y1 z1 
(p (21 

xl @Yl 
p 

zl 

(1.3.2) 

(1.3.3) 

Here: (xl,yl,zl) are coordinates of point M cl)= c2)= M, ,(i>, (,,(i), ,ii) -M 

are projections of angular velocity w (i) (02) x1 (02y1 
(i=1,21; x1 , y1 , z1 

are coordinates of point O2 in terms of coordinate system S 
1' 

Surface Cl rotates about 
z1 and 

w (11 = (p = 0, 
xl Yl 

@;;I = Jl> (1.3.4) 

(21 . It is easy to express Wf in terms of components of coordinate 

system 
sf rigidly connected with the frame 

(1.3.5) 0 

(21 = [I[ 1 Wf -w(2)siny 

-J2)cosy 

The angular velocity ~1 (21 can be expressed in terms of components of 

coordinate system S 1 with the aid of the matrix equation 

ry(211 = Llfl ro;2)l 

Here: matrix 

16 
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cos@$ 
I- -sldl 

sin@1 0 

II L lf 1 cos$j 0 = 
0 0 1 1 

0 

-w(2)siny 1 (1.3.7) 

-d2Losy 

describes transformation of vector projections by transitivn from Sf to 

3’ 
It results from ( ex: pressions (1.3.5)-(1.3.7) that 

.J2) siny sin41 

c 1 ml 
(21 = -(p) siny cos$l 

-o(2Losy 
I 

(1.3.8) 

Transformation of coordinates of some point given in system Sf to Sl is 

represented by matrix equation 

[rll = Plfl [rfl 3 (1.3.9) 

where 

For point O2 the column matrix is given by 

Expressions (1.3.9)-(1.3.14) yield 

-c cos@l 

C sin$l 

0 1 - (~1=0102) 
1 

17 

(1.3.10) 

(1.3.11) 

(1.3.12) 



The subscripts "f" and "1" for [R ] f and [R ] denote that the same vector 1 
R = 0102 is expressed in terms of components of two coordinate systems: 

sf and S 1' 

Equations (1.3.2)-(1.3.4), (1 

I 

3.8) and (1.3.12) yield 

- [VI (l)] = 

)-zlw(2)sinycos@l-Cw(2)cosy sin$l 1 
= -x1 (J2) cosy + w(1))+zlw(2)siny sin~l-Cw(2)cosycos~l (1.3.13) 

w(2)siny(x cos@ -y sin@ + C) 1 11 1 J 

To express the relative velocity v (21) in terms of components of coordinate 

system Sf it is sufficient to put in matrix (1.3.13) $L = 0 and xl = 

Xc, Yl = yr, z, = z, because with 9, =0 the coordinate system S, coin- 
L I I I I 

tides with S f' 

[v (21)] = 
f 

I 

Yf d2) COSY + U(l)) -zf wc2)siny 

-Xf (J2) cosy + u(l)) -c o(2Losy 

w(2)siny(x f + C) 
L 

I 

(1.3.14) 

For the case when motion is transformed between parallel axes the crossing 

angle y must be put equal to zero in matrices (1.3.13) and (1.3.14). For 

gear drives withintersectingaxes,such as bevel gears,the shortest distance 

C must be put equal to zero in the same matrices; the angle y is made by 

intersected axes. 

1.4. The General Law of Gearings 

Let us suppose that tooth surfaces CL and C2 which are in linear or 

point contact must transform motion with prescribed angular velocity ratio 

R21 
= (p :Jl> . with prescribed location of the axes of rotation. Because 

the contact of surfaces must be a continuous one the surfaces should not 

interfere each other or lose their contact. Therefore, at a point of contact 

18 
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the relative velocity ~1 (211 must belong to the common tangent plane T 

to the surfaces at their contact point M (Fig, 1.4.1). Consequently, 

at a point of contact the following equation 

Nl l 11 

(211 = 0 (1.4.1) 

must be observed. Here: Nl is the common surface normal at the contact 

point M, Al is the relative velocity represented by equations (1.3.13). 

For a surface Cl represented by vector-function 

51 cute1 E cl, (0) E G (1.4.2) 

the surface normal is defined by equation 

(1.4.3) 

and (1.4.3)-yield that the scalar triple product 

is equal to zero. The equation 

(21) 1 = 0 (1.4.4) 

provides an equation of meshing 

fww,) = 0 (1.4.5) 

a_r, a:, 
because r and r are functions of surface coordinates (u,D) and 

El (12)(x,+,zlAll is a function of (u,e,G,). 

Surface X$ can be represented in coordinate system Cf by the 

vector-function 

(1.4.6) 

Different valuesiof 9, 
4 

correspond to different positions of L 
1 in coordinate 

system Sf. For a definite position of El the motion parameter $1 must 

be considered as a fixed'one. 

19 



2 

FIG 1.4.1 

Contacting Tooth Surfaces and Conmqn Tangent Plane 
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The equation of meshing (1.4.5) can be obtained by 

[ 

a:, a:f -WV m) au ae -f 1 = f(u,e,$l) = 0 (1.4.7) 

Here: 

(1.4.8) 

is the surface normal; the relative velocity Vf 
(21) is represented by 

equations (1.3.14). 

For gearings with parallel and intersecting axes the law of meshing 

can be expressed in another form. 

For gears with parallel axes the relative motion can be represented as a 

rotation about the instantaneous axis of rotation I-I (Fig. 1.4.2). By a given 

ratio 

&p> 
R21 = - 

&p> (1.4.9) 

the relative motion is rolling of two cylinders with operating radii r2' 
1 

and rl defined by equations 

I 
rl p 9 8 
I=- &p) =R21, rl +r2 = c, 
rq 

(1.4.10) 

where C = 0102 is the distance between the axes of rotation. 

With cylinder 1 fixed, cylinder 2 rotates about axis I-I with angular 

velocity 0.1 (21) = ,w _ p. The relative velocity v1 (211 is represented 

by equation 

Vl 
(21) = (.p) x A, (1.4.11) 

I 
where M is the point of contact of surfaces Cl and X2; MM is a per- 

pendicular to axis I-I drawn from point M. 

Equations (1.4.1) and (1.4.11) yield 
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(b) 

I 

02 

2 

FIG 1.4.2 
Pitch Cylinders and Instantaneous Axis of Rotation 
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- 

(21) 7 I 

81 l cw 
x id M) = [PJ~u(~~)M M] = 0 (1.4.12) 

Because the scalar triple product is equal to zero,all three vectors must 

belong to the same plane and the surface normal PJ1 must intersect the 

instantaneous axis of rotation I-I (Fig. 1.4.2,B). This fact results in 

the following theorem: 

The contact line of tooth surfaces of gears with parallel axes of 

rotation must be such that common normal to tooth surfaces at any point 

of contact intersects the instantaneous axis I-I of rotation (the 

line of tangency of operating pitch cylinders). 

According to this theorem the law of meshing may be defined with the 

following equations 

x1-x1 (use) yYl (u,e) zl-z1 cute1 
= = 

N xl N 
Yl 

N zl 
(1.4.13) 

Here: xl(um, Y~(u,~), zl(u9e) are coordinates of a point of surface 

Cl; X1(@,), Yl(@l), Z1(ll) are coordinates of a point which belongs to 

axis I-I (Fig.l.4.2). It is assumed that axis Zl is the rotation axis of 

gear 1 and l1 is a coordinate of a point of this axis. 

The first equation (1.4.13) 

x1 (9,) -x1 cu,e> yl(tp+uw 
Nxl(U,e) = - NY1 iu,e1 

(1.4.14) 

yields the equation of meshing (1.4.5). 

Equations (1.4.13) can be applied for bevel gears, too. 

The equation of meshing can also be defined another way, if instead of 

(1.4.14) the following equation is used 

xf-xfw’~l) Y-y wwJ,) =f f 
NfxwLO1) Nfyb,wl) 

(1.4.15) 

Subscript "ftl denotes that all vectors are represented in terms 

of components of coordinate system Sf(xf,yf,zf) rigidly connected with the 
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frame; Xf'YfJf are coordinates of a point which belongs to the axis of 

instantaneous rotation; Xf9Yf'Zf are coordinatesof a point of surface 

9 hxf'hyf'hzf are projection of, surface normal. 

1.5 Contact Lines, Surface of Action, The Enveloped Surface. 

The same three coordinate systems mentioned in item 1.1 are considered. 

The problem to be solved'can be formulated as follows: The surface Cl of 

gear 1 teeth is given; surface C2 of gear 2 teeth, the surface of action 

cf and lines of contact of surfaces C 1 and C 2 must be defined. Let us take 

El as the generating surface and C2 as the surface generated by C,,. 

Let us suppose that surface Cl is represented by vector-function 

(use1 E G (1.5.1) 

Then, contact lines on surface Cl can be represented by the following 

equations 

x1 = +,e> 

y1 = Y1(U'V 

z1 = z,wa 

Nl' Yl (21) = f(u,e,Gl) = 0 

(1.5.2) 

The first three equations represent surface Cl, the fourth one represents 

the equation of meshing; $1 is a fixed value for every contact line. 

Fig. 1.5.1 shows surface CL covered with contact lines CL($J,(~)) 

(i=1,2,3,...), where $l(i) are fixed values. By a definite value of $I,(~) 

line CL(+l(i)) will become the line of instantaneous tangency of cl and 

2' 
The to-be-defined surface C2 can be represented as the locus of 

contact lines in coordinate system S2(x2,y2,z2). Consequently, surface 

E2 can be represented by equations 

x2 = x2he,4+ y2 = Y2b.bw+ 
(1.5.3) 

z2 = ~~w3,4+ fwwl)=O 
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FIG. 1.5. I 

Surface Covered with Contact Lines 
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The first of these three equations can be obtained through the matrix equation 

(1.5.4) 

where 

1 , 
matrix [ 1 b121 describes coordinate transformation by transition from S 1 

to s 2' 

The surface of action is a locus of contact lines represented in the 

coordinate system Sf by equations 

Xf = xf(u,ml), Yf(U,wl), zf = ~f(udm1)3 

fw ,q=o (1.5.5) 

The first three equations are obtained by using the matrix equation 

[rf] = kfl($ll] [,pkJ (1.5.6) 

Sample problem 1.5.1. 

The generating process of spiral bevel gears is shown in Fig. 1.5.2. 

The tool is a head-cutter with blades mounted in it. Both shapes of a 

blade are straight lines. By rotation about head-cutter axis C the 

straight-lined side of the blade describes a cone surface with vertex angle 

2$, (Fig. 1.5.3,a). The angular velocity of the head-cutter rotation is 

not related to the kinematics of tooth generation. 

The head cutter is mounted on the cradle of the cutting machine (Fig. 

1.5.2). In the process of cutting the cradle and the to-be-generated 

gear rotate aboutintersectingaxes O-O and a-a with angular velocities 

($1 and f('), respectively. The generating surface Cl and the 

generating gear are shown in Fig. 1.5.3. 

The conic surface Cl is represented in coordinate system SC 
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HEAD CUTTER 

a 

THE TO BE GENERATED GEAR 

THE GENERATING GEAR 

HE TOOTH OF 
GENERATING GEAR 

SPACE OF 
ERATING GEAR 

I FIG. 1.52 
Schematic of Cutting Process for Spiral Bevel Gears 

27 

- 



.FlG. 1.53 
Generating Surface and Generating Gear' 
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(Fig. 1.5.4,a) by the equation 

X 
C 

= rccot$c-ucos$C, 

YC 
= usin$csin8, (1.5.7) 

Z 
C 

= usinQc c0se. 

Here: u=[&] and 8 are surface coordinates, 9 
C 

is the angle made 

by the cone generatrix and cone axis and rc is the mean radius of the head 

cutter measured in plane xc=O. 

'Coordinate systems SC and S1 are rigidly connected with the gener- 

ating gear. Axis x1 is the axis of rotation of the generating gear by 

cutting. The location of the head cutter (or of system SC) is defined by 

the distance OIOc=b and by the angle q (Fig. 1.5.4;b and Fig. 1.5.4,~); 

B is the mean spiral angle; M is the point of intersection of the cone 

surface and axis z 1' 
The coordinate transformation from system SC to S1 is represented 

by matrix equation 

CrJ = CMJ l?,l~ (1.5.8) 

where (Fig. 1.5.4) 

[ M = lc 1 

c 

'1 0 0 0 

0 cos q -sinq -bsin q 

0 sinq cos q bcos q 

0 0 0 1 
I 

(1.5.9) 

Equations (1.5.7)-(1.5.9) yield 

x1 = rccot~c-~~o~ $, 

Yl = usin lClcsin(B-q)-bsinq (1.5.10) 

z1 = ~sin$~cos(8-q)+bcos q. 

Equations (l.S.lOj represent the generating surface in coordinate system 

slP represent the generating gear. 

The surface normal is represented by the equation 
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(b) 

0, 

t Y FIG. 1.54 
30 



= 0 ~sin$~cos(e-q) -~sin$~sin@-q) = 

-cos $, sin $,sin(S-q) sin$c cos(8-q) 

= usin2Qcil + usin$ccos$csin(8-q)~l + usin~ccos$ccos(8-q)lcl 
(1.5.11) 

The surface unit normal is represented by the equations (it is assumed that 

usir~$~ #O): 

Cl = sinQcil + co~$~sin(B-q)il + cos~c~~~(e-q)lcl (1.5.12) 
I 

In the process of cutting the generating gear 1 rotates about axis xf (of 

coordinate system Sf) rigidly connected with the frame, while the generated 

gear 2 rotates about axis z 
P 

of the auxiliary coordinate system S which 
P 

is rigidly connected with Sf(xf,yf,zf) (Fig. 1.5.5). The angular velocities 

u(ll and u(') 

rotation (O-jI(p) 

are related such that OpM (P) is the instantaneous axis of 

is the generatrix of the pitch cone of gear 2). A coordinate 

system S2 (see below) is rigidly connected with gear 2. 

The coordinate transformation is represented by matrix equations 

(1.5.12) 

(1.5.13) 

(1.5.14) 

According to the drawings of Figs. 1.5.5-7, the mentioned matrices are 

given by 

(1.5.15) 
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FIG 1.55 
Positioning of Generating Gear and Generated Gear During Cutting 



FIG. 15.6 

Applied Coordinate System (Top View) 
. 
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FIG. 1.57 
Coordinate Systems Sp and Sf 



I 
cos(~~-A~) 0 sin(y2-A21 hcos(y2 -AZ) 

IIMp, O 1 0 0 = 1 (1.5.16) 
-sin(y2-AZ) 0 cos(~~-A~). -hsin(y2-AZ) 

l?2pl 

LO 0 0 

cw2 sinJ2 0 O- 

-sine2 cos@2 0 0 

0 0 10 

0 0 0 1 

1 _I 

(1.5.17) 

I 

Let us define the equation of meshing (1.4.7). The relative velocity vf('l) 

is represented by equation 

Vf 
(21) = v (2) _ v (1) = w (2) 

-f --f . -f x Ef + qJp x $1 - tf(l) x Ef = 

(6Jf(2) - 0 -fqx Ef + cpp x $1 = 

if If kf 

.- (2)sin(y2-A2)+o(1) 
. -w 

0 (p> cos(~~-A~) + 

Xf Yf =f 

?f if kf 

-h 0 0 

+pl . sln(Y2-A21 0 (J2) cos(y2-A2) 

(1.5.17) 

Vectors f(') and o(l) are related such that IL, (2) -w(l) = ~('1) coincides _ 

with the generatrix of the pitch cone. Consequently (Fig. 1.5.5), 

p siny2 = W (11 cosA 2 
(1.5.18) 

Equations (1.5.17) and (1.5.18) yield 

(21) = ,(2) 
Vf cm tv,-A,) [-yf_if + (xf+hl~f] (1.5.19) 

(21) = It results from equation of meshing (1.4.7) that Nf*xf 0 and from 

(1.5.19) that 

-yfNfx + (xf+LsinA2)N fy = O 
(1.5.20) 
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Here LsinA2=h (Fig. 1.5.5), where l=O,M(P) is the mean length 

of the generatrix of pitch cone. 

Equation (1.5.20) can be obtained another way, on the basis of equation 

(1.4.14), which was represented above by 

Xf-xf -_ 
*fx 

yf-yf - 0 
*fY 

(1.5.21) 

Here Xf and Yf are coordinates of an arbitrary point on instantaneous 

axis of rotation - generatrix op)) . In the discussed case putting into 

equation (1.5.21) coordinates Xf=h, Yf=O of point 0 p (Fig. 1.5.7), 

equation (1.5.20) will be found. 

Equation (1.5.10) and matrix equation (1.5.12) with matrix (1.5.15) 

yield that 

Xf = rccotqc -UCOS$~ 

yf = u sin1Clcsin(8-q+@l)-bsin(q-@1) 

Zf = usin$cos(B-q+$l) +bcos(q+l) 

Equation (1.5.11) and matrix equation 

pf3 = CLfJ &I 
yield 

(1.5.22) 

(1.5.23) 

"fx = sinac, 
"fY 

= cos$csin(B-q+$l), 

nfz = cos qJc cos(e-q+~l) (1.5.24) 

Matrix [Lag] is a submatrix of [~fl] which is found from [Mfl] 

by elimination of the fourth row and fourth column. Projections of Nfx and 

Of Nfy 
contained in equation (1.5.20) can be substituted by proportional 

projections of cf. 

Equations (1.5.20), (1.5.22) and (1.5.24) yield 

(rC cot$c-u~os$c+LsinA~)cos$~sin(B-q+@l)- 

[~sin$~sin(8-q+$1)- bsin(q-$l)] sin$c= 

[(rccot$c+LsinA2)cos$c-u] sin@-q++l)+ 

bsin$csin(q-$l) = f(u,B,@l)=O (1.5.25) 
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I 

Equation (1.5.25) is the equation of meshing. 

Equations (l-5.10) and (1.5.25) represent the set of contact lines 

covering surface Cl. Each contact line of the set is defined by fixed 

value of 9 . Surface C2 is represented by equations 

x2 = x2wh4+ y2 = Y2ww+ z2 = z2(uh+ 

fb,e ,9,1=0 (1.5.26) 

The first three equations are defined by equations (1.5.10) and matrix 

equality 

[r,l = p2p] Fpf] [Mfl] kl] (1.5.27) 

1.6 Relations Between Principal Curvatures and Directions of Two Surfaces 

Being in Meshing 

Generally, equations of the enveloped surface are considerably more com- 

plicated than of the enveloping one. Therefore a direct way to obtain the 

principal curvatures and directions of the enveloped surface is a very hard 

problem. The solution of this problem can be significantly simplified if 

relations between the principal curvatures and directions of two surfaces which 

are in mesh are known. Such relations were worked out first by F. L. 

Litvin. It is necessary to emphasize that the principal curvatures and 

directions of two contacting surfaces are necessary to define the size and 

direction of contact ellipse at the contact point. 

Let us suppose that surfaces Cl and C2 contact each other at 

point M given in the coordinate system Sf rigidly connected with the 

frame. Principal directions of surface Cl are represented by unit 

vectors _iI and t11 and principal curvatures KI and KII of c 1 are 

known. At the point of contact the equation of meshing 

nf -f 
(ljv (12)=~f(1).[(~~1)-~$2))Xrf(1)-($X~/2))] =O (1.6.1) 

is satisfied 
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Here: r& (11 is the surface C unit normal; v (12) 
1 -f is the relative 

velocity (v 
,f 

WI= ,fUl-v 
-f 

(21; yf(i) (i=1,2) is the transfer velocity of 

a point rigidly connected with surface Ci;Rf is a vector-radius drawn 

from the origin of coordinate system Sf to an arbitrary point of the 

line of action of angular velocity Ep'; vector v (l*)= - v ."f sf 
(21)= - 

(VfC2) - v f(1)) where yf(21) is the vector represented by equations (l-3.14). 

Equation of meshing (1.6-l) must be observed not only at the point of 

contact M, but in the neighborhood of M, too. Therefore, equation (1.6.1) can 

be differentiated which yields: 

;l(9p>+ n(l> ((plX $ll),o 
s - - - (1.6.2) 

It is assmued that w(l)= const, R(21)= $ = const , R = const. Lower 

subscript "f" is eliminated for simplification. 

According to results demonstrated in items (1.1) and (1.2) by equations 

(1.1.31) and (1.2.7) it yields that 

Equation (1.1.30) yields 

*Cl) _ r - Vtr 
Cl) + v (11 

-r 

It results from equations (1.6.2), (1.6.3) and (1.6.4) that 

c 
.(1),(1),(12) +;i(l).v(12)+ nqp2)v 1 [ (1) 1 + ., - . wr If - . -tr 

[ 

,w,u2>,01 = 0 
-. - -r 1 

where 

p> = v (1) (21 
-tr - Vtr 

(1.6.3) 

(1.6.4) 

(1.6.5) 

(1.6.6) 

JW = &I - p (1.6.7) 

Equations (1.6.5)-(1.6.7) yield 

fi yvwl~ v (11 @Jwx p) + Jl>* ((pX v cl)-J*)x v 
-r _ -r -tr - -tr 

(1)) 

= 0 (1.6.8) 

38 

I 



Two other equations 

V -r 
(2) = v (1) + p) 

-r (1.6.9) 

(1.6.10) 

were represented before in item (1.1) by equations (1.1.35) and (1.1.36). 

Relations between the principal curvatures and principal directions of 

surfaces C 1 and C2 will be composed on the basis of equations (1.6.8) - 

(1.6.10). Before this, let us recall the following equations from 

differential geometry. The normal curvature of a surface is represented by 

equation 

il v -r -r KZ-- 
VraV 

(1.6.11) 
-r 

Along the principal direction, vectors i, and yr are co-linear and 

the principal curvature is represented by equation 

Pr.i = - tci(vr.i), (1.6.12) 

where i is the unit vector directed along the principal direction. 

Now, let us place two right trihedrons at the contact point M (Fig. 

1.6.1): Sa(J.I,AII,n) and Sb(iIII,iiv,n) Here: ;I,zII are unit vectors 

directed along principal directions of surface Cl; i-III and riv are 

unit vectors directed along principal directions of surface 3; " is the 

common unit normal of surfaces Cl and C 2' It is assumed that unit vectors 

t1 and i -III make an angle o (Fig. 1.6.1). Vectors xr('), fir(') and 

v (2)) i (2) 
-r -r 

can be expressed in terms of components of coordinate systems 

'a and S b by following equations 

V (1) = v (1). (1). 
-r r1 11 + VrII ,111 

li (1) _ * (1). - (1). 
-r - nrI 11 + nrII 111 

V -r 
(I21 = v,Ifi iIII + v(2) i. i-iv -1V 

Ii (23 _ - (21 . - (2). 
-r - nrIII ?I11 + nriv ,liv 

(1.6.13) 

(1.6.14) 

(1.6.15) 

(1.6.16) 
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Fig. 1.6.1 

Principal Directions of Surfaces C, and x2 
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Vectors vr (2) and rir(') can be expressed in terms of components of 
. . coordinate system Sa(lI,:II I ,n) by the following equations 

V C2) = v (?)i = y C2) ’ (2). 
rI -r -I rII1 1III'tI + Vriv Iliv'JI 

VrII (2) = v (?)tII = vrIIIiIII.iII + v C2)i. 
-r - - riv -IV'%1 

li (21 = fi (2) . _- (2) - (2). 
rI -r '?I-"rII1 ,iIII'tI + "riv '. -1V '?I 

(1.6.17) 

(1.6.18) 

(1.6.19) 

* (2) = ;1(2). - . . 
nrII 

- (2) . 
-r' 51 = nrIII~III'~II + nriv liv'tII (1.6.20) 

Here (Fig. 1.6.1): 

;III.~I = cOSo, ti+fI = - sina, iIII'iIIzsina, ~iv'tII=CoSo (l-6.21) 

Equations (1.6.17)-(l-6.21) yield 

V (21 _ (2) 
r1 - VrIII coz.0 -If::? sino 

(2 
VrII 

- (2) 
nrI 

- (2 
nrII 

(1.6.22) 

=v(21 . rIII sino+ v (2) riv COSG 

- (2) 
= nrIII COsU - h,~~)sino 

* (21 . (2) = nrIII sine+ n . cos (5 riv 

(1.6.22,a) 

(1.6.23) 

(1.6.24) 

Equations (1.6.8)-(1.6.10), (1.6.12) and (1.6.22)-(1.6.24) yield the 

following system of 9 linear equations in 8 unknowns vu) rI , vzi)I, 

* (11 
nrI ' 

* (11 
nrII ' 

(21 
VrIII' v(2) riv' 

* (21 $?I: 
"rII1' riv 

* (11 
nrI vI 

(12) * (1) 
+ "rI1 'II 

(12) Cl> 
-VrI 

(1.6.25) 

(21 
VrIII COSO- vzfisino - vril) = vI(12) (1.6.26) 

(2) 
VrIII 

(2) sina + vrivcoso - v (11 = v (121 
rI1 

- (2) 
"rII1 costs - i+$sino - firI - (l)- [& :I] 

(1.6.27) 

(1.6.28) 

- (2) 
nrIII (1.6.29) 
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- (11 
nrI 

(11 = 0 
+ KIVrI (1.6.30) 

- (2) 
nrII 

(1) = 0 
+ KIIVrII (1.6.31) 

* (2) 
nrIII 

(2) = 0 
+ KIIIVrIII (l-6.32) 

f, t2) + K (21 = 0 
riv ivVriv (1.6.33) 

Here: K~ and KII' KIII and K iv are principal curvatures of surfaces 

3 and C 2 at contact point M. 

After eliminating 6 unknowns a system of 3 linear equations in two 

unknowns x1 = vrIcl), x2 = v,!:' can be got: 

allXl + a12x2 = bl 

a21Xl + a22x2 = b2 

a31Xl + a32X2 = b3 

(1.6.34) 

Here: 

all = - KI + 1/2 
C 

(K III + 'iv) + (KIII - K-&O" 2~ 
3 

; 

al2 = a2l = l/2 - Kiv)sin2cr 1 ; 
a22 = - KII + l/2 

[ CKIII + Kiv) - (K III - Kiv) COS 2 Cl 1 ; 
1 - KIVI 

(12) 

+ KiV)+(KIII - KiV)COS2U - 1 
vII (121 2 (KIII - KiV)sin2a 

(12) 
b - - 

2 1 -- vI 2 (KIII Kiv)SiII 2Cr 

vII 
(12) 

2 (K III + KiV)-(KIII - Kiv)COS 20 1 
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The number of equations (1.6.34) is not equal to the number of unknowns. 

Therefore, requirements to this system by which the system will have a 

solution must be discussed. 

Let us consider two cases: (a) the instantaneous contact of surfaces 

Cl and C2 is a linear-contact; (b) the instantaneous contact of surfaces 

is a point contact. 

In the first case surface Cl is covered with instantaneous contact 

lines (Fig. 1.6.2,a) and the direction of yr (11 from point M to the 

neighboring one is an indefinite one and the system (1.6.34) must have an 

infinite number of solutions. In the second case contact points makes on 

surface C 1 a line (Fig. 1.6.2,b), the direction of yr (1) to the neigh- 

boring point is a definite one, and the system (1.6.34) must possess one 

solution. 

It is known from linear algebra that system (1.6.34) possesses an 

infinite number of solutions if the rank of matrix 

(1.6.35) 

is equal to one 

That yields 

all al2 bl a2l a22 b2 -z-z-- -z-z- 
a2l a22 b2' a3l a32 b3 

(1.6.36) 

Taking into account that a21 = al2 equalities (1.6.36) can be repre- 

sented as: 

(1.6.37) 

(l-6.38) 
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Fig: 1.6.2 

Directions of Velocity of Contact Point 
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The system of equalities (1.6.37) provides only two independent 

equations because 

bl = a31-vI Cl21 (W 
:11- vII a12, b2 = a32-vI(12) a12-vIi12) a22 

Equality (1.6.38) and 

all al2 a3l -=.-=- 
a2l a22 a32 

provide three equations for definition of KcIII, Kiv and U: 

tan 2a = 2F 
KI-KCII + G 

KIII + KiV = KcI + KcII + s 

KCI-KII + G 
'III - 'iv = cos 20 

(1.6.39) 

(1.6.40) 

(1.6.41) 

(1.6.42) 

Here: 
F = a31a32 

b3 + vI 
(12) 

a3l + vII 
(12) 

a32 

G = a3: - ';I,, 

b3 + vI a3l + vII 
(12) 

a32 

s = a31 + a;;,, 

b3 + vI a31 + vII 
(12) 

a32 

For the case when surfaces Cl and X2 are in point contact and the sys- 

tem (1.6.34) possesses one solution the rank of matrix (1.6.35) must be equal 

to two. That yields that the determinant of matrix (1.6.35) must be equal 

to zero. Consequently, 

all al2 bl 

a2l a22 b2 =o 

a3l a32 b3 

(1.6.43) 

Equality (1.6.43) provides an equation 
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f(KI,KII,KIII'KiV"I = 0 (1.6.44) 

which relates the principal curvatures and directions of two surfaces in 

point contact. 

Sample problem 1.6.1. Let us compose equations to define principal curvatures 

and directions of a spiral bevel gear generated ,by a cone surface (sample 

problem 1.5.1). The generating surface Cl is represented by equation 

(1.5.22). 

The relative velocity vr (11 . is represented by the following equations 

[ 

V r 
(11 = 1 ayf du 

I 

ayf d0 
audt+aedt 

azf du azf de 
audt+aedt 

3X f du ax . f dfJ --+-- 
au dt a0 dt 

Equation (1.5.22) and equality (1.6.45) yield 

[ 1 V Cl1 = 
r 

r ' 

-cos $$ 

sin$c sin@-q+$l) 2 + usin$ccos(O-q+@l) g 

(1.6.45) 

(1.6.46) 

sin$ccos(fJ-q+@l) g - usin$csin(8-q+@l) g 

The unit normal of generating surface was represented by equations (1.5.24). 

It results from (1.5.24) that 

(1.6.47) 

Vectors (1.6.46) and (1.6.47) are co-linear for principal directions of 

surface C 1' Consequently, 
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Equalities (1.6.46) - (1.6.48) yield that 

du de --= 0 
dt dt 

(1.6.48) 

(1.6.49) 

One of the principal directions with unit vector !I corresponds to 

d” 0 -= . The principal curvature 
dt 

fi(ll fpl 
KI = - *= 

1 

"y r 
-5=- 

utanqc 
zr 

The unit vector t1 can be represented by equation 

Equations (1.6.46) and (1.6.5l)'yield 

0 

Ci,,l= c0swq+4q L 1 -sin@-q+$l) 

(1.6.50) 

(1.6.51) 

(1.6.52) 

de The second principal direction corresponds to dt = 0. The principal 

curvature is 

KII = 0 (1.6.53) 

and the unit vector of the principal direction is 

A case is suggested when A2 = 0, w (I)= lrad y-hen: 
set' 

(1.6.54) 

(p> = _1 , 
sin Y2 
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[ 1 
-1 

$1 = 0 

[I 
, 

0 

[ 1 J2) = _1 sin Y2 1 
-siny2 

0 

cosy2 

fyl 
[ 1 p) = -coty 

2 
H 

-x , 
0 

where (x,y,z) are represented by equations (1.5.223, the lower subscript llflf 

is eliminated. Equations (1.6.40)-(1.6.42) define principal curvatures and 

directions of tooth surface C2 of the generated gear. 

Let us define principal curvatures and directions at the mean contact 

point M with coordinates x=y=O, z=L. It results from equations (1.5.22) 

and (1.5.24) that point M is generated by @l=O, 6-q=90"-8. By x=0, y=O 

vector v(12) is equal to zero. Coefficients a31, a32, b3, F and S are 

represented by equations: 

1 = sinQcsin8coty2 (1.6.55) 

Here: 

II 1 p = cos $, cos B 
i cosJI, sin8 

0 

II w (12) 1 = [ 0 
-cot 1 y2 

0 

[I iI = [ 1 sin8 

-cos .6 
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= cos B cot y2 

Here: 

(1.6.56) 

,, = n01,(2)v (l) 
[ 3 -- -tr I [ 

_ n(1)(,,(1)yt;2) 1 = 
_ - - Lsin$ccoty2 

Here: 

-1 

[ 1 Jl> = 0 [I 0 

if jf kf 

L 1 -1 0 0 

0 0 L 

; [,tr(2)] = [vtrq = &l)xofM = 

2F = 2a31a32 = sin2 f3 coty2 

b3 L 

G = ai - “3’2 = _ (sin2Jlcsin2@ - 2 
cos 6) cot Y2 

b3 LsinlClc 

s = a:1 + a322 = _ (sin2Jlcsin2B + cos2B)cotY2 

b3 Lsin$c 

(1.6.56,a) 

(1.6.57) 

(1.6.58) 

(1.6.59) 

Equation (1.6.50) yields that at point M 

1 03s IJ, 
KI = - utanQc = 

_- 
r (1.6.60) 

C 

It results from equations (1.6.40)-(1.6.42) and (1.6.57)-(1.6.59) that 

tan2a = 2F = 
KI - tcII + G 
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sin26 CotY, 

4 cos l/J, + 
(sinZ$,sin2g - cosZg)cotY2 

C 
sinQc 

KIII + KiV = KI + KII + s = 

cos Q; (sin2gcsin2B + cos2B)cotY2 
___L_ 

r c LsinQc 

(1.6.61) 

(1.6.62) 

KI 
KIII - Kiv = 

- KII + G = 
cos 20 

cos G, (sin2$csin2B - cos2B) cot y2 
--- 

r 
C 

Lsinllrc 
= 

cos 20 (1.6.63) 

Equations (1.6.61)-(1.6.63) define the principal curvatures and directions 

of the generated surface of spiral bevel gear at the main contact point M. 

These equations may be applied for bevel gears with straight teeth, too. 

For this case B=O, $ =0, KI = KII =0 because the generating surface is a 
C 

plane. Equations (1.6.61)-(1.6.63) yield 

tan2a = 0, KIII = 0, Kiv = - 
cot Y2 

LsinjJc 
(1.6.64) 

1.7. Contact Ellipse 

The bearing contact of spiral bevel and hypoid gears is checked on a 

test-machine under a small load. The bearing contact depends on the con- 

tact ellipse of tooth surfaces which are considered as elastic ones. 

There is a typical problem in the theory of elasticity: (a) the magni- 

tudes of contact forces and mechanical properties of surface materials are 

given; (b) the principal curvatures and directions of surfaces at their 

contact point are known. Methods known from the theory of elasticity permit 

to define the approach of surfaces, the size and location of contact ellipse. 
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To appraise conditions of tooth contact it is more reasonable to 

consider as given the approach of surfaces under the action of load. Then, 

the size and location of instantaneous contact ellipse can be defined as a 

result of a simple geometr?c solution. The magnitude of surface approach 

is known from experiments. 

Fig. 1.7.1 shows surfaces Cl and C2 in tangency at point M. The 

unit normal and the tangent plane are designated by n and t-t. The 

deformed surfaces are shown by dotted lines. The areas of deformation are 

KlM Ll for surface Cl and K2ML2 for surface X2. 

Let US choose points N(o,E(')) and N'(z),!Z.(~)) where p is the 

distance from M and R (i1 (i=l,2) is the distance from the tangent plane. 

AS a result of deformation, body 1 will be displaced in a direction opposite 

the unit normal n by 6, (Fig. 1.7.1, Fig. 1.7.2); body 2 will be dis- 

placed in the opposite direction by d2. The approach of both bodies is 

6=61+62. 

The approach of bodies is accompanied with their elastic deformation. 

It is necessary to distinguish the displacement of a body point with the --- 

body given by di (i=1,2), and a displacement relative to the body resulting 

from elastic deformation. 

Let us define the new location N2 of point N. With the body Point 

1 will displace by 61 and get the position Nl. Due to elastic deformation 

which is equal to fl point N will be displaced from Nl to N2. The 

distance k between point N2 and the tangent plane t-t iS represented 

by the following equation 

g = R(l) - csl + fl (1.7.1) 

The resulting position of point N' of body 2 is Ni. The distance 
1 

R between point N2 and the tangent plane t-t i‘s represented by equation 

9, = !P) + ci2- f2 (1.7.2) 
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Surfaces C, and C2 in Tangency - Before and After Deformation 
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Displacements of Surfaces C, and C2 
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Due to the approach of bodies and their deformation, points N and NV 

must coincide and 

k(l) - 6 + f = g(2)+ (j 
11 2 - f2 (1.7.3) 

Equality (1.7.3) yields 

gt11 - !G2) 
I 

= 61 + 6* - (fl + f*) (1.7.4) 

Equation (1.7.4) is observed at all points of the area of deformation. 

Without this area 

g(l) - g(2) / > 6 = 6 + 6* 
1 (1.7.5) 

The right part of equation (1.7.4) is larger than zero because 6l>fl, 

6*>f*. Therefore the left part of equation (1.7.4) represents the absolute 

magnitude of the difference between R(l) and !Z.(*). 

Within the area of deformation 

p) - ,@ ( 2 6 (1.7.6) 

Equation 

g(l) - Jp) 1 = 6 (1.7.7) 

corresponds to the edge of deformation area. Equation (1.7.7) defines the 

line which limits the area of deformation. 

Let us correlate a(il, with surface C i curvatures. Surface C i is 

represented by equation 

r = r(u,8) (1.7.8) 
0" - 

Curve MM' (Fig. 1.7.3) on a surface C is represented by equation 

r = E[U(Sl, fJ (sll 2 (1.7.9) 

where s is the length of an arc. 

Let us designate by As = E' the arc length and by A r=m' the increment 

of vector-radius r. The increment A: can be expressed by Taylor-Series 

Expansion. 
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MEI'=Ar= d_r dsA~+ d2_' (As)* 
2 2! 

d3z i!d + . . . , , 
+Y&z 3! (1.7.10) 

where 

dr a: du a: do 
2 

z=--+-- d : 
ds au ds ae ds' z= 

a2_, du de a2: de * ---+- 
* auae ds ds a82 

0 
ds and so on. 

Let us draw a plane II tangent to the surface C at point M and then 

I draw from point MI a perpendicular M'P to II. Vector PM which is 

parallel to surface unit normal n represents the deflexion of point M' 

from the tangent plane II. This deflexion is 

PM'=Rn (1.7.11) 

Here: R>O if directions of PM' and n coincide. 

Equalities 

s=Ar, m=m+PM'=MP+Rn 

yield 

dr 
*+Rn= 

d2: (As)* d3: (As)~ 
gAs+-- ds2 2! + --+ . . . . ds3 3! (1.7.12) 

dr 
Because vectors @ and 2, -& and n make right angles the scalar _ 

product 

(E + Rn).n (1.7.13) 

yields 

q+ - d2_rn LE2 + tk., L&2 + . . , , 
ds2 . 2! ds3 m 3! 

Up to members of third order R is represented by the equation 

(1.7.14) 

&=d2r.nd 
ds2 s 1.2 

(1.7.15) 
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It is known from differential geometry that 

d*r 
-.n = K, 
ds S 

where K is the surface curvature in normal section. 

Equations (1.7.15) and (1.7.16) yield 

(1.7.16) 

(1.7.17) 

Let us express As in terms of components of the coordinate system 

n, 5 and R (Fig. 1.7.3); axes n and 5 are located on the tangent plane 

Il. 

As* 2 = l)* + <* = p , (1.7.18) 

where p = MP. 

It results from (1.7.17) and (1.7.18) that 

R = l/2 K p* (1.7.19) 

The surface normal curvature can be expressed by principal curvatures 

and angle q (Fig. 1.7.3) made by MD and MP, where MD is the principal 

direction with principal curvature KI 

K = KICOS2q + KISin2q = KICOS2(p-0) + 

KIIsin2(LI-0) 

Equations (1.7..19) and (1~7.20) yield 

2!2 = p 
2 2 

(U-U) + KII sin*(u-o) 1 

(1.7.20) 

(1.7.21) 

Figure 1.7.4 shows a plane tangent to surfaces Cl and C2 at point 

M of their contact; MD1 and MD2 with unit vectors . (11 
3 and iI are 

principal directions of Cl and C2 with principal curvatures (1) 
KI and 

12) 
KI ' MP defines a common normal section of surfaces Cl and x2. Deflec- 

tions of points of surfaces Cl and' C2 from the tangent plane T (Fig. 

1.7.3) are represented by equations 

(w-cxcl)) +KI(:)sin2(u -o(l))] (1.7.22) 
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*g(2) = p* K(*)cos*(p-aq + K(1> . 2 
[ I II sin WCX (2)) 1 (1.7.23) 

At the edge of the area of deformation equation (1.7.7) must be held. 

Equations (1.7.22), (1.7.23) and (1.7.7) yield 

co~*(p-Ct(~)) + t+:)sin*(u-a(l))- K{*)COS2(p-~(*)) 

(2) 
-KII sin*(u-a (2)) 1 = 2 26 (1.7.24) 

Let us transform equation (1.7.24) taking into account that 

P2 = q* + 52 , cosp= 3, 
P 

sinu= 2 
P 

It results from (1.7.24) and (1.7.25) that 

(1.7.25) 

l12(K(1)COS20L(1) (1) 
+ KII 

sin2a(1) _ K(*)cos*a(*) (2) 
I I - KII sin*a(*)) + 

5*(K(l)sin*a(l) (1) 
+ KII 

cos2c,(l)K(*)sin2a(*) (2) 
I I - KII cos2a(*)) + 

q<(glsin*acl) - g*sin*u(*)) = + *&s (1.7.26) - 

where 

g1 
= Kil' _ +', g2 = KI'*) - KI';' 

Let us designate cx (2) _ ,!U = o (Fig. 1.7.4). The angle ct (11 defining the 

location of MD1 - the principal direction with principal curvature KI - 

can be chosen in an arbitrary way, particularly the way that 

glsin2u (1) -g2sin2cx (2) = 0 (1.7.27) 

Equation (1.7.27) and equation 

p> = p + u 

yield 

(1.7.28) 

tan*Cx(l) = gl _"ft",:,", 
2 

It results from equations (1.7.26) and (1.7.27) that 

(1.7.29) 

Br1* + A<* = + 6 - (1.7.30) 
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Here: 

A = + Kill- $*I- (g; - 2glg2cos 2 CT + g;)* 1 
B = $ K(l)- 

E 
K(2’+ (g; - 2glg2cos 2 (J + 

E 
g;]+ 1 , 

(1.7.31) 

(1.7.32) 

where 

K 
(l) = #I+ +, Kc*) = K;*)+ K!;’ 

E I & 

Equation (1.7.30) confirms that the projection of the area of deformation 

on the tangent plane is an ellipse with lengths of major and minor axes of 

2a and 2b (Fig. 1.7.5), where 

(1.7.33) 

Equations (1.7.29), (1.7.30)-(1.7.33) define the size and direction of 

contact ellipsewithknown values of 6 and principal curvatures of surfaces. 

Sample problem 1.7.1. Surfaces of spiral bevel gears being in point 

contact are considered. There are given: 

(11 = 
KI 

Cl)= 0.004122047, KII -0.000292913, 

(*I = -0 001513779, K(*’ = -0.00027!%21, KI . II 

the angle o made by principal directions with (11 
KI and (21 

KI is equal 

to 12.47'. The approach of surfaces 6 = 000787401. It is necessary to 

define the size and direction of contact ellipse. 

Equations (1.7.29) and (1.7.31-1.7.33) yield 

a (1) = - 7.950, a = 0.539370078, b = 0.035826771 

angle (1) is made by axis On and principal direction with curvature (11 
KI . 

By positive value of o(l) this angle is counted from axis On counter-clock- 

wise. (Fig. 1.7.4). 
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2. GEOMETRY OF SPIRAL BEVEL GEARS 

2.1 Introduction 

Spiral bevel gears which are used in practiye are normally generated with 

approximately conjugated tooth surfaces by using special machines and tool 

settings. The geometry of spiral bevel gears is not defined until these 

special settings are calculated; and the geometry of spiral bevel gears with 

all machine and tool settings is a very complicated one. 

There are some important reasons why simplified mathematical models 

of the geometry of spiral bevel gears must be developed. These models can 

be applied as a basis for designers and researchers to solve the Herzian 

coi,tact stress problem and define dynamic capacity and contact fatigue life, 

to develop the theory of lubrication of tooth surfaces. Dynamic load capacity 

and surface fatigue life was considered by J. Coy, D. P. Townsend, and E. 

Zaretzky for spur and helical gears [ 1 1. The proposed geometric models 

of spiral bevel gears will enable researchers to extend this work to these 

gears, too. 

The offered models of the geometry of spiral bevel gears are based on 

an assumption that tooth surfaces are conjugated ones. The aim to use 

special machine settings is dictated by the attempt to generate conjugated 

surfaces. Therefore the mentioned assumption is not in contradiction with 

the practice. 

The basic idea of generation of conjugated surfaces of spiral bevel 

gears is grounded on the following principles: 

(1) Two generating surfaces CF and Ck are considered being in 

tangency along a line. 

(2) Surfaces C F and 'k 
are rigidly connected with each other in the 

process of an imaginary generation of surfaces Cl and C2 of the pinion 

and the member gear. It is supposed that surface CF generates surface cl 
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of pinion teeth and surface ck generates surface X2 of member-gear teeth. 

(3) There are three axes of instantaneous rotation which correspond: 

(a) to the meshing of CF and Cl in the process of generation of C 1 ; 

(b) to the meshing of Ck and C2 in the process of generation of X2; 

(c) to the meshing of surfaces Cl and X2. All three mentioned axes of 

rotation must coincide with each other. 

(4) The contact of tooth surfaces Cl and C2 is localized because 

generating surfaces CF and Ck does not coincide with each other (they have 

a common line only). 

There are two kinds of bearing contact of spiral bevel gears applied 

in practice. The first one sorresponds to the motion of the contact ellipse 

across the tooth (Fig. *.l.l,a), the second one to the motion along the tooth 

(Fig. 2.1.1,b). Accordingly, two mathematical models of the geometry of 

spiral bevel gears corresponding to the mentioned cases will be proposed. 

2.2. Geometry I: The Line of Action 

Generating surfaces CF and Ck are two cone surfaces (Fig. 2.2.1) 

which are in tangency along the generatrix AB. 

Let us imagine that generating surfaces being rigidly connected with 

each other rotate about axis xf (Fig. 2.2.2) with angular velocity w (4 

(d = F,k) while gears 1 and 2 rotate about axes Oa and Ob with angular 

velocities (p and w(*). Axis zf is the instantaneous axis of rotation 

because angular velocities w (1) , cl+*) and u(~) are related by the follow- 

ing equations 

where 

w (Id) = x Ef, (2.2.1) 

w (IdI = u(ll _ $3; &l*) = w(ld), (2.2.2) 

where 
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Fig, 2. I, I 

Two Types of Bearing Contacts 
63 



A 

Fig. 2, 2. I 

Generating Cone Surfaces 
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Fig. 2,2.2 

b 

PITCH CONE 

PITCH CONE 
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Vectors w(l), u(~) and wc2) are represented 

w (l) = w(l)(-sinyl;f + COSYlkf) 

w (4 = _ wWtf 

w i2) = - ~(~)(siny~if + cosy2kf), 

where Yl and y2 are pitch cone angles. 

Equations (2.2.1)-(2.2.5) yield 

w (1) _ &Ad) -- 
sin Y1 

p = (p sinyl ,,,W y=y 
smy 2 siny 2 

The generating surface Cd(d = F,k) can be 

which are analogical to (1.5.22) 

Cdl = 
Xf rdcot $, - UdCOS $, 

(4 = 
yf udsin$csinT d - bdsin(qd - 4,) 

by the following equations 

(2.2.3) 

(2.2.4) 

(2.2.5) 

(2.2.6) 

(2.2.7) 

represented by equations 

(2.2.8) 

Cdl = 
=f u sin$ccosT d d + bdcoS iqd - $j> 9 

where 'd = ed - qd + @d 

Here: (ud,Bd) are generating surface coordinates, 0, is the angle of 

rotation about axis xf; JI, is the shape angle of head-cutter blades; rd'bd 

and qd are parameters of tool settings (Fig. 1.5.4). 

The surface normal is represented by equations 
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if if kf 

axf aYf az, 
-- 

a0 ae ae 

axf aYf az, 
-- 

au au aeu 

= 

udsinQc (sinqcif + co~$~sin-cdj~ + cosJlccosrdkf), (2.2.9) 

where rd = ',j - qd + 0, 

The surface unit normal is represented by equation 

Nf 
?f = Nf = 

T-r 

sin$ i c--f + co~$~sinrdj~ + cosJlccosrdkf 

(by udSinqc # 0) (2.2.10) 

To define the line of action of gears 1 and 2 let us imagine that all 

four surfaces - CF,Ck,Cl and C2 - are in meshing. Surfaces CF and Ck 

are rigidly connected with each other and are in tangency along the generatrix 

AB (Fig. 2.2.1). Surfaces CF and Cl are in linear contact and lines of 

instantaneous contact cover these surfaces. The same statement is true for 

surfaces 'k and C 2' Fig. 2.2.3 shows surface Cd(d = F,k) covered with 

instantaneous contact lines; the location of contact lines on the surface 

depends on the angle ed of rotation. 

Surfaces Cl and C2 can be in point-contact only. Contact points 

of these surfaces move along the common generatrix AB (Fig. 2.2.3, Fig. 2.2.1) 

while all four surfaces - CF,Ck,Cl and C2 - are in meshing. The line 

of action of surfaces C 1 and C 2 is the locus of contact points represented 

in coordinate system Sf by equations 

Cd) = rW 
rf -+f (Ud'ed't$ 
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N(?V(F1) = fl(u,,e,,~,) = 0 -f ,"f (2.2.12) 

Nf. -f (k1V(k2) = f*(uk,ek,Cjk) = 0 (2.2.13) 

Cd) Cd) Equation (2.2.11) was represented in terms of components xf , yf and 

(4 
Zf by equations (2.2.8). The surface normal lif and unit normal cf 

were represented by equations (2.2.9) and (2.2.10). 

Vector ,Vf (Fl) is represented by equation 

Vf W 
C=ll = JW x r 0-1 = 

-.f 

if 2f ,kf 

(Fll 
Wfx 

(Fll 
+Y 

(Fl) 
Wfz 

Xf yf Zf 

Equations (2.2.1), (2.2.;) and (2.2.4) yield that by d=F 

(2.2.14) 

w (F1) = ucF1- (,J(‘) = _ ~(‘~~0s y1 kf = _ wcF1cot y1 kf (2.2.15) 

It results from equations (2.2.8), (2.2.9), (2.2.14) and (2.2.15) that 

Nf -f 
(Ft)~ CF1) = u(F)cOty 

1 
(y n f fx - xfnfyl = 

$3 cot Yl E 
uF- rFcot$, cos$, )sinrF - 

bFsinqc sin(qF - a,) 1 =0, 

Where rF = OF -qF + $F. 

Equation (2.2.16) yields that 

(uF- rFcot$ccos$c) sin(OF- qF + 4,) - 

bFsin$, sin(qF- 0,) = 0 

Similarly, equation (2.2.13) can be expressed as 

(uk- rkcot~cc~~$c)sin(Bk- qk + 9,) - 

bksinQcsin(qk- 0,) = 0 
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At contact points of surfaces Cl and C2 the following equations must 

be observed 

Xf = rkcot$, -ukcosJlc = rFcot$,-uFcos$, (2.2.19) 

yf = "k sinqcsinr - b sin(q k k k- +,> = 

uFsin$csin-c F - bFsin(qF- @,> (2.2.20) 

Zf = uksin$cco~ r k + bkcos(qk- 0,) = 

uFsinQc COSTS + bFcos(qF- 4,) (2.2.21) 

Here: rd = ed- qd + $d(d=F,k) 

Parameters ud,-cd(d=F,k) are related by equations (2.2.17) and (2.2.18); 

@k= @F because generating surfaces Ck and CF are rigidly connected and 

rotate with the same angular velocity. 

After elimination of uk and uF the system of equations (2.2.17)- 

(2.2.21) yields a system of two equations 

rk - bk 
sin (qk- $,) 

sin-r =r -b 
sin(qF - ad) 

k F F sinr F 

b 
bksin(qk - +,> 

sin-r k 1 cos2$ccos Tk = 
. 

b 
bFSin(qF - 0,) 

sin-r F 1 cos2~ccos TF 

(2.2.22) 

(2.2.23) 

These equations will be observedforall values of $, if machine sett- 

ings will satisfy the following equations 

c$~ = $,, Ok - qk = OF - qF, bksinOk = bFsinBF , 

bksinqk bFsinqF 

rk - cos B 
=r _ 

F cos B ' 

where B = 90' - (Ok - q,) = 90' - (0P - q,) 

(2.2.24) 
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The geometrical interpretation of equations (2.2.24) is represented by Fig. 

2.2.4. 

The line of action of surfaces Cl and C2 is represented by equations 

xf = 
sin(qd - 4 

dl 
sin-r d I 

sinQc cos$, , 

sin-c 

yf 
d 

= Tzq- Xf' (2.2.25) 

bdsinBd cos T d 
Zf = sinr d + K&- Xf' 

where 

'Cd 
= ed - qd + I$,, d = F,k@, = @F 

Equations (2.2.25) represent coordinates of the line of action as functions 

x,(+,) 9 Y,(@,) , ‘f(+,) * 

2.3. Geometry I: Contact Point Path on Surface Ci(i=1,2) 
-- -.; _I~_ - 

Contact point path on surface Ci(i=1,2) is a locus of points of con- 

tact represented in coordinaite system Ci rigidly connected with gear i. 

Fig. 2.3.1 shows coordinate systems Sf and Sh rigidly connected with 

the frame and system Sl rigidly connected with gear 1. The coordinate 

transformation by transition from Sf to s 1 
is represented by matrix 

equation (Fig. 2.3.1) 

rl] = [ILlhI [Lhfl kf] = 
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(IO 
Z C 

(F) 

(K) (F) 
oc M = IK , oc M = rF 

(IO (F) 
0, 0, = b, , of 0, = b, 

O,B= b, sin 8, = b, rin8F 

SECTIONS OF GENERATING 

SURFACES ZF AND c, 

BY PLANE xt = 0 

Fig. 2. 2 4 

Parameters of Machine Settings 
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Xh 

Fig. 2.3. I 

Coordinate Systems Associated with Gear 1 
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sin@1 COS $J1 sinyl 'f@,> 

-sin$lcosYl ax 9, -sin$1 siny 1 Y,(t$ 

-sinyl 0 cos y 1 'f('d), 

Xf($d)cos 9, 'OS Y1 + Yf($d)sin 0, + zf(4d) 'OS $1 sin y1 

-xf($d) sin $1 cos y1 + Yf(@d) 'OS $1 - zf(@d)sin $1 sin Yl 

-xf(+d>sin y1 + zf($d)cos y1 I 
= 

(2.3.1) 

Here: x,(4,), Y~(I#I~) and z,($,) are functions represented by equations 

(2.2.25). The angle of rotation $1 of gear 1 and the angle of rotation of 

generating gear are related by the equation which is analogous to 

equation (2.2.6) 

'd $I1 = - siny 1 
(2.3.2) 

Fig. 2.3.2 shows coordinate systems Sf and S 
P 

rigidly connected 

with the frame and coordinate system S2 rigidly connected with gear 2. The 

coordinate transformation is represented by matrix equality 

P21 = F2P] [LPfl FfI 

[ sin$2 cos 0 $I 2 -sinG2 cos 0 (I2 0 0 1 1 
I 

[ 

= 

cos y2 0 -siny2 

0 1 0 

siny2 0 cos y 2 1 Xf(@d)cos $2 ‘OS y2 - Yf(@d)sin $2 - sinY2 

xf(@d)sin@2 cosy2 + y,(~,)cos~, - zf(@d)sin@2sinY2 1 , (2.3.3) 

xf($d)sin -f2 + zf(+d) 'OS Y2 

where 

'd 
$2 = Gy- 2 

(2.3.4) 

Matrix equality (2.3.3) and equations (2.2.25) and (2.3.4) represent the 

contact point path on the surface C2 of gear 2. 
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Fig. 2.3.2 

Coordinate Systems Associated with Gear 2 
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2.4 Geometry I: The Instantaneous Contact Ellipse 

The size and direction of the instantaneous contact ellipse may be 

obtained by the equations given in Items 1.6 and 1.7. 

The solution of this problem can be divided into three stages: (1) the 

determination of principal curvatures of surfaces Cl and C2, (2) the 

determination of the principal directions of surfaces Cl and of C2, and 

(3) the determination of contact ellipse. 

Principle Curvatures and Directions of Surface cl 

Surface Cl is generated by cone surface CF. Principal directions 

and curvatures of C F are represented by the following equations (see sample 

problem 1.6.1): 

(2.4.1) 

(F)= _ 1 
KI uFtanQc = 

cos(8 - $,I 

bFsinJlctanJlcsin(qF - @,)+ rFcosQccos(B - 4,) 
(2.4.2) 

.(F) : 
'11 

(F) = o 

KII 
(2.4.4) 

The principal curvatures and directions of Cl are represented by equations 

analogical to equations (1.6.40)-(1.6.42) 

tan 2o(l) = (2.4.5) 
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(11 
KI 

(1) = Kw+ s(l) 
+ KII I (2.4.6) 

(1) 
K(Fl+ G(l) 

KI 
(1) = 1 

- KII cos 2.(l) 
(2.4.7) 

(11 Here: K~ and K!:) are principal curvatures of surface C1;ocl) is the 

angle made by the directions of principal curvatures (F) KI and K:'). Co- 

efficients F(l), S(l) and G(l) are functions of $ F and represented by 

equations 

2 2 
G(l) = a31- a32 

b 3 +ViF1)a31 +ViF1)a32 

2 2 
SO) = a31+a32 

b +V~F1)a31+V~~1)a32 3 

(11 = 
a31 

n(F),(Wf) 
. - I 

_ KI(F)V;F1; 

[ 1 
sinQc 

n (F) = [ 1 cos $, cos (8 .- 9,) 

cos$csin(6 - $1 

0 

[ 1 0 WI = o [ 1 -JF) cot y 1 

(2.4.8) 

(2.4.9) 

(2.4.10) 

(2.4.11) 

(2.4.12) 

(2.4.13) 

(2.4.14) 

(2.4.15) 
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To simplify equations for v (F1) and a31 let us note that 

bF = r cos B 
F sinqF -; rFCOS (6 - $,> - bFsin(qF - 4,) = 

sin$Fcos(B - $,) 
rF sinqF ; bFsinqctan$cSin(qF - @F) 

+ rFcos $,c"s (6 - 0,) = rF 
cos 6 sin(qp - OF> + cos2i/lcsin$FCos(B-qF) 

sinqFcOsqc 

After that v(~~) can be represented by the following equation 

,JF> cotylcos$csin@F (2.4.16) 
F sinqF 

Vectors :I '(F) and 51 (F) were represented by equations (2.4.1) and (2.4.3). 

Equations (2.4.11)-(2.4.16), (2.4.1) and (2.4.3) yield 

a31 
(l)= w(F)cotylsin$csin(13 - 4,). 

cos 6 sin(qF - @$ 
(2.4.17) 

cos B sin(qF - 0,) + sin~Fcos‘$cCOs(B- @F) 

a$) = w(F)cotYICOS(B - (p,) 

j,(l) = - 
3 L (CJF))2 cotyl cos 13sin$= 

cos (6 - 4,) 

(Wa(311) = _ rF(u(F) 
vI 

cotylsin~ccosJIC)cOs B. 

sin$FSin(B- @F) sin (qF -OF) 

sin qF cos Bsin(qF- 4,) + cos2~cSin@Fcos(~-~F)] 

(2.4.15) 

(2.4.19) 

(2.4.20) 
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1 2 
- r F dFLot QCOS (B - $I,) sin$Fcos $, (2.4.21) 

sinqF 

Equations (2.4.2), (2.4.5)-(2.4.10) and (2.4.17)-(2.4.21) represent the 

principal directions and principal curvatures of surface Cl. At the mean 

contact point the principal directions and curvatures are represented by the 

following equations 

tan2o(l) = 
sinQcsin2B 

$ tanylsin2$c+sin2Bsin2$c - cos2B 
F 

(11 (1) = - -- 
+KIi 

cos lj, 
Y 

cotyl(sin'B sin2$c + cos2B) 

rF Lsin$c 

=os Q, cotyl (sin2Bsin2$c - cos28) 
-+ 

(1) 
ICI 

(11 = _ 
-"II 

rF LsinQc 

cos 20(l) 

(2.4.22) 

(2.4.23) 

(2.4.24) 

Now, let us define principal curvatures and directions of surface C2 

generated by surface CK. They are represented by equations analogical to 

equations (2.4.5)-(2.4.7) 

tan 20(2) = (Kf y(G:)2) 
KI 

(2.4.25) 

(21 
KI 

(2) 
+ KII 

= K;K) + s(2) 

(2) 
K(K) 

(21 = I 
+ d2) 

KI - KII cos 2cJ(2) 

(2.4.26) 

(2.4.27) 
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To define functions Fc2) (@,I, G(23($k) and S(2)($k) (#k=$F) it is 

sufficient to change subscripts "F" for "k" and "1" for "2" in expressions 

(2.4.17)-(2.4.21). 

The principal curvature &I KI of surface 'k is represented by equation 

analogous to (2.4.2) 

(k) = 
KI 

cos(8 - $,> 

- bksinQctanQcsin(qk - 4,) +rkcosQccos(B- $k) 

Equations (2.4.28), (2.4.2) and (2.2.22) yield that 

r -r 
K F 
cc's @, 

(2.4.28) 

(2.4.29) 

Equations (2.4.25)-(2.4.27) and (2.4.28) represent principal curvatures 

and directions of surface C 2' 
On the third stage of solution the size and direction of instantaneous 

contact ellipse is to be obtained. Equations (1.7.30)-(1.7.34) are to be 

applied for this aim. 

2.5. GEOMETRY II: GENERATING SURFACES 

Fig. 2.5.1 shows two generating surfaces Ck and CF rigidly connected 

with each other. These surfaces are in tangency along their common circle 

C of radius rd (Fig. 2.5.1). Surface Ck is a cone surface represented 

in the coordinate system by equations (2.2.19)-(2.2.21). Surface CF is a 

surface of revolution. It is generated by the revolution of an arc m-m of a 

circle of radius p about axis xa (Fig. 2.5.2,a). The arc m-m is represent- 

ed in the auxiliary coordinate system Sa(xa,ya,za) by equations. 
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/ 

/ 

Fig. 2. 5. I 

Generating Surfaces: Conical Surface and Surface of Revolution 
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(a) 

a 
/ ‘F 

* 

(b) 

m 

Fig. 2.52 
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X a = o(sin$F - sinqc) 

Y, = 0 (2.5.1) 

Z a = p(cos$,- cos@,>+ rF 

Surface CF is represented in coordinate system Sc(xc,yc,zc) by matrix 

equality 

[rc] = [Lea] pa] = 

[ 0 1 cos 0 8 F sin8 0 F 
0 -sinOF cos e Ii F 

X a 

.I 

'a 
z a 

(2.5.2) 

X 
C 

= p(sinQF- sinJlc) 

Y, = 

i 

P(COSJIF - cos $,I + rF I 
sin9 F (2.5.3) 

Z = 
C 

p(cosJIF - COSTS) + rF 
1 

cos OF 

Here: 9, and OF are surface CF coordinates. The coordinate transformation 

by transition from Sc(xc,yc,zc) to Sf(xf,yf,zf) (Fig. 1.5.4) is represented 

by matrix equality 

Pf] = Pfc] Ld (2.5.4) 

Expressions analogousto (1.5.9) and (1.5.15) yield 

11 I Hfc = 
10 

I 
0 0 

0 cos(qF- @,I -sin(qF- 4,) -b sin(qF -4,) (2.5.5) 

0 sin(qF- 4,) cos (qF- 4,) b cos (qF - 0,) 

0 0 0 1 

It results from expressions (2.5.3)-(2.5.5) that the generating surface cF 

is represented in coordinate system Sf by equations 

(F) 
Xf = p(sin$F-sin$c) 

P(COS$~- COSJI,) + rF 1 sinrF- bsin(qF- $,) (2.5.6) 

p(cosJIF- COS@~)+ r 1 cosrF+ bcos(qF- $,), 
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where 

= 'F-&F- (P,> 

The surface normal is represented by equation 

ar 
N(F) = 4 x g = 

F F 

I ,if If ,kf 
I 

P co.5 9, - psinJIFsinrF -psin*Fcos-rF = 

0 AcosrF -AsinrF 

ApsinJIFif + Apcos.~/~~sin-r~~~ + AocosJIFcosrF_kf (2.5.7) 

Here 

A = p(cos$ F - COS$~) + r F 

The surface unit normal ,@I is represented by equation 

n = sinQFif + cos$ (sin-c j 
F-f 

+ COSTF,kkJ (2.5.8) 

The generating surface Ck and its unit normal are represented by 

equations (2.2.8) and (2.2.10) with subscript d=k. 

rk By qF=$crF=rk,uk=. 
sin $, 

surfaces C F and Ck are in tangency 

along the circle of radius rk = r F . 

2.6 Geometry II: The Line of Action 

The law of meshing of surfaces Ck and C2 was represented by the 

equation [see(2.2.18)] 

(u k - rkcot$c c~s$~) sin(ek -'qk + 4,) 

- bksinQcsin(qk - 0,) = 0 (2.6.1) 

At contact points of surfaces Cl and C2 parameter 

uksin$c = rk (2.6.2) 
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Equations (2.6.1) and (2.6.2) yield 

rksin P,- (qk- 0,) I- bksin(q k- ~kl=f(ekAk)=O (2.6.3) 

This equation relates the surface parameter ek with the angle of 

af rotation 4,. By x f 0 this equation represents in implicit form a 
k 

function e,($,). 

Equations (2.2.8), (2.6.2) and (2.6.3) yield that the line of action 

can be represented that way 

Xf =.o, yf = 0, zf = rkcOs[Bk-(qk- $,)I + 

4(“““(~- $1 = zf(+kk) (2.6.4) 

where angles [8 - (qk- I$~)] and (qk- $k) are related by (2.6.3). 

Contact point paths on surface Cl and C2 can be defined the same 

way mentioned in item 2.3. 

2.7. Geometry II: The Instantaneous Contact Ellipse. 

The principal curvatures and directions of surface C2 generated by 

surface C k were defined in item 2.4 by equations (2.4.20)-(2.4.21). For 

surface C (21 (21 (21 

2 

with geometry II coefficients a31 ' a32 ' b3 ' 
Fc2), ,c21 

and S(2) are represented by following equations 

(11 - a31 --w &I coty2sinJ'ccosrk (2.7.1) 

(2) = -uW 
a32 coty2sinrk (2.7.2) 

(21 = 
b3 r (w(k))2 k coty2sin$c 

cosrksinqk 

I, 

+ cos 8 cos(qk- $k) 
sinq 

- 
k 1 

(2.7.3) 

F(2) _ a31a32 --= 
sinqkcoty2cosrksinrk 

b3 rk[cos rksinqk+ cos 8 cos(qk - (pkJJ (2.7.4) 

G(2) = a:1 - a3'2 = (sin2Jlcc0s2rk - sin2rk)sinqkcoty2 (2.7.5) 
b3 rk[cosrksinqk+ cos Bcos(qk- +k)] 
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2 
+ a32 = (sin2~cc0s2Tk + sin 2 rk)sin qkcoty2 

b3 rk[cosrksinqk+ cos $ cos(qk - @kg (2.7.6) 

Parameters 8 
k and 9, are related by equation (2.6.3). 

Now, let us define principal curvatures and directions of surface Cl 

generated by CF. To solve this problem we must in first define principal 

directions and curvatures of surface CF. 

It is easy to verify that principal directions of surface CF correspond 

dQF 
to dt 

deF = 0 and to dt = 0 and that principal curvatures are represented 

by equations 

(F1 = - p(cosqJ 
‘OS $, 

KI F- cost,) + r (2.7.7) 
F 

(2.7.8) 

At the point of contact of surfaces CF and Cl the principal curvature is 

(F) = _ - 
KI 

cos +, 

rF 
(2.7.9) 

because at this point $, = $,. 

Principal curvatures and directions of surface Cl are represented by 

equations 

tan2o(l) = (F) 2F:L:+ G(l) 

KI - KII 

(11 
KI + KII 

(11 = K!F)+ K;;l+,(ll 

(2.7.10) 

(2.7.11) 

IFI VI 
(11 (1) = KI - KII 

+ G(l) 

KI - KII 
cos 20(l) 

(2.7.12) 
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Here: 

F(l), ,(‘1, s(l), sc21, G(l), Gc21 

The size and direction of instantaneous contact ellipse are defined the same 

way which was mentioned in item 1.7. 

87 



3. METHODS TO CALCULATE GEAR-DRIVE KINEMATICAL ERRORS. 

3.1. Introduction 

It is well known that errors of manufacturing and assemblage of gears 

induce kinematical errors in gear-drives. These .errors' can'be represented 

by a function 

A 9, (4, +jl, (3.1.1) 

where $1 is the angle of rotation of the driving gear 1, 

A9 = (As,, As,, . ..I (3.1.2) 

is the vector of errors; 

A +2 = $J; - 9, (3.1.3) 

is the kinematical error of the gear drive represented as the difference of 

theoretical and actual angles of rotation of the driven gear. 

In this part of the report two methods to calculate the function (3.1.1) 

are presented: the first one is a numerical computer method and the second 

one is worked out as an approximate method but with a possibility to obtain 

relatively simple results which are in most cases in an analytical form. 

3.2. The Computer Method. 

In the process of motion tooth surfaces -Cl and C2 must be in contin- 

uous tangency. It was demonstrated (see item 1.1) that following equations 

are to be observed (see equations (1.1.12) and (1.1.13). 

,rf (‘) (u1d+4q = :f 
(2) (u2a2da2) (3.2.1) 

2f 
(11 (ul,eldl) = ~f(2)(u2,e2.tb2) (3.2.2) 

Here: :f (i> and nf(i) are the position vectors and normals of surfaces 

'i as defined in coordinate system sf rigidly connected with the frame; 

ui* 'i are the surface coordinates, 9. 
1 

are the angles of gear rotation. 
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Here it is assumed that errors of manufacturing and assemblage did not 

appear. 

For gears with errors.represented by vectors AQl and A(22 following 

equations of tangency must be observed instead of equations (3.2.1) and 

(3.2.2) 

:f 
(1) (u~,~~,+W,> = ~f(2hu2~~2~~2+121 

nf 
(1) (ul,~l+A!Il) = _nf'21(u2,e2~~2JQ21 

Equations (3.2.3) and (3.2.4) yield the function 

~,(~,,AQ_,, As21 = $$(4,1 + 0, (@+2,~ AQ,) 

Here: G$ (4,) is the theoretical function yielded by equations 

(3.2.2). 

Equations (3.2.3) and (3.2.4) also yield the functions 

Ui (~l,AQl"32), 'i(~l'~l,~,) (i=l,2) 

Functions 

(3.2.3) 

(3.2.4) 

(3.2.5) 

(3.2.1) and 

(3.2.6) 

(3.2.7) 

represent the path of contact points on surface c. 
1 

corresponding to gear 

meshing with errors of manufacturing and assemblage. 

Functions 

ri(“i’ei) 9 U~($lls ep,) (3.2.8) 

represent the path of contact point on surface .Z. 
1 

correspondent to the 

meshing without errors. Comparison of functions (3.2.8) and (3.2.7) yields 

the change of contact point path induced by errors, '. 

Let us consider the detailed solution of equations (3.2.1)'-(3.2.2) 

and (3.2.3)-(3.2.4). 
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Vector-equations (3.2.1) and (3.2.2) yield only five independent scalar 

equations because plf(l) 1 = pf(2) I: 

fj (u1~e1,~1,u2~e2,~~l = 0 (j=1,2 ,...,5) (3.2.9) 

It is assumed that 

{fl’f23f3,f4’f51 EC1 

and that the system of equations (3.2.9) is satisfied by a set of parameters 
* * * * * * 

p = (uls~1+u2~e2~~2) (3.2.10) 

and surfaces C 1 and C2 are in tangency at a point Mo. Surfaces Cl and 

C2 will be in point contact in the neighborhood of M. if by the set of 

parameters P the following inequality is held 

Then in the neighborhood of 

afl afl af, afl afl 
P---P 
au, ael au2 ae2 a$, 
-----------_------- 
af5 af5 af5 af5 af, 
----- 
au, ael au2 ae2 a$, 

#O 

P equations (3.2.9) provide funct 

(3.2.11) 

ions 

(3.2.12) 

Function +i($l) represents the ideal law of motion transformation. 

Mostly, 9;(9,) is a linear function. 

Equations (3.2.3)-(3.2.4) also yield a system of five independent 

equations 

qj (u1,e1,~1,u2,e2,~2,As?) = 0 (3.2.13) 

By the same value of $1 this system is satisfied by a set of parameters 

P' 
** ** * ** ** ** 

= cu1s+~l~u2~~2 d, I (3.2.14) 

which is different from the set P represented by (3.2.10). 
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System of equations (3.2.13) can yield functions 

u,(~,,AQl~e,(~,,~),u2~~~~~~~~2~~~~~~~~2~~~~~l EC1 (3.2.15) 

in the neighborhood of P' if at P' the following inequality is held 

D(#,,J12,$3,J14J$,> 

Dbp1,U2,e2da2) + O (3.2.16) 

Function $,(@l,AQ) represents the real law of motion transformation. 

Kinematical errors of the gear-drive are represented by function 

A@2 = qpqpJg (3.2.17) 

The demonstrated method can provide not only the kinematical errors 

induced by errors AQ but new contact point path on the surface Ci, too. 

(see functions (3.2.7)). 

The solution of a system of five non-linear equations is a hard problem 

and needs iterations. To save computer time a more effective way of solution 

was recently proposed by F. Litvin and YE. Gutman 1121. The principle of this 

method follows: 

The system of equations (3.2.13) can be represented as follows 

fl(u1,e1,~1,u2,e2,~2'A,H1,H2)=0 (3.2.18) 

f2(u1,e1,~1,u2,e2,~2'A,H1'H2)=0 (3.2.19) 

f3(u1,81,~1,u2,82,~2'A,H1,H2)=0 (3.2.20) 

f4(u1,e1,~1,u2,e2,~2) = 0 (3.2.21) 

f5(U1,e1,~1,U2,e2,~2) = 0 (3.2.22) 

Equations (3.2.18)-(3.2.20) are yielded by vector equation (3.2.3) and equa- 

tions (3.2.21)-(3.2.22) by vector equation (3.2.4). Parameters A,H1 and 

H2 are linear measurements which.represent the shortest distance between 

gear axes. of rotation and axial settings of gears (Fig. 3.2.1). 
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FIG. 3.21 
Axial Settings of Gears:. I$, H2 and A 
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Let us suppose that points M1(u1,81) and M2(u2,B2) of surfaces Cl 

and C 2 are chosen. By a set of given parameters cu1,e1,u2,e2) system of 

equations (3.2.21) and (3.2.22) becomes-a system of two equations in two 

unknowns which may be expressed as 

F1 (9,4,> =O (3.2.23) 

F2 (9,,@,) =O (3.2.24) 

After that a system of three equations must be solved 

A-K1(U1,e1’~1’U2’e2’~2)=0 (3.2.25) 

H -K (U ,8 d$ 4 so da )=o 121112 2 2 (3.2.26) 

H -K (U 8 ,@ ,U ,e ,$ >=O 23111222 (3.2.27) 

The method of solution of the two systems of equations (3.2.23)- 

(3.2-23) and (3.2.24)-(3.2.26) is an iterative procedure. By computation 

one of four variated parameters (u19~1~u29~2) is fixed and the three others 

must be changed that way that two mentioned above systems of equations are to 

be satisfied. 

The advantage of the proposed method is the opportunity to dividethe 

system (3.2.18)-(3.2.22) of five equations into two subsystems -- Of two 

and one of three equations - and solve them separately 

3.3. Approximate Method 

Accuracy of gear drives investigated by the above computer method 

can be defined as a rule only numerically and this is a certain disadvantage 

of this method. Therefore, in addition to the computer method an approximate 

method with the opportunity to obtain results analytically is proposed. 
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Figure 3.3.1 shows two surfaces Cl and C2 which are in tangency at 

point M. Points Ml and M2 of these surfaces coincide with each other. 

at M, (1) position vectors Ef and ;i2) drqwn from Of and surface unit 

normals ;jl) and ELLS) coincide at M, too. Surfaces Cl and C2 

rotate about axes I-I and II-II and angles of rotation $11 and I$; correspond 

to the positions of surfaces shown in Fig. 3.3.1. It is supposed initially 

that C 1 and C2 are manufactured and assembled without errors. Due to 

errors surfaces C 1 and C 2 cannot be in tangency by the same values of 

4 1 .and +G - either a clearance will appear between these surfaces or the 

surfaces will interfere with each other. Figure 3.3.2 shows that surfaces 

3 and C 2 are not in tangency: points Ml and M2 do not coincide with 

each other, (11 
rf # &L2) and &l) # "r2). To get surfaces Cl and ,X2 

in tangency it is sufficient to rotate one of the surfaces by an additional 

small angle. It is more preferable to hold the position of surface Cl and 

to rotate surface C2 until it contacts Cl. Then the additional angle of 

rotation A$ 2 will represent the change of theoretical value I$: induced 

by errors of manufacturing and assemblage. It can be predicted that Ac$~ 

is a function of the vector AQ and changes in the process of motion. So 

A@, = f(+~_Ql- (3.3.1) 

The definition of function (3.3.1) can be based on the equations of 

kinematical relations discussed in Item 1.1. 

Because tooth surfaces Cl and .X2 are to be in continuous contact the 

following vector equations must be observed 

&-(‘I = dEi2) -f (3.3.2) 

dn(‘) = 
..f d"i2) (3.3.3) 
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FIG. 33.1 

Contacting Tooth Stirfaces 
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FIG. 3.32 

Tooth Surfaces with Clearance Induced by Errors 
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It results from equations (3.3.2) and (3.3.3) that 

ds(1) -tr 
+ ds(l) = dsc2) 

-r -tr + dzS2) 

an(') -tr 
+ dn(') = dnc2) 

-r ..tr + dnz2) 

(3.3.4) 

(3.3.5) 

Here: ds ti) 
-tr is the displacement of the contact point of surface C i 

(i=1,2) in transfer motion (with the surface); dzii) is the contact point 

displacement in relative motion (relative to the surface); notations of 

dnci) 
-tr and dn(i) -r have the same meanings for the tip of the unit normal 

vectors; subscript "f" is dropped for simplification. 

Equations (3.3.4) and (3.3.5) are similar to equations (1.1.35) and 

(1.1.36). 

Errors of manufacturing and assemblage induce that the theoretical con- 

tact point changes its position. To hold surfaces in tangency following 

equations must be observed- 

ds(') -tr 
+ &f) + ds(') = &$' + dzi2) + ds(2) 

-4 -4 
(3.3.6) 

dn(') -tr + dni') + dn(') = dF:t) + dn12) + dn(2) 
-9 

1 . 
-9 

3.7) 

Here : the subscript "ql' corresponds to the displacement induced by errors. 

It is necessary to empha, ;ze that not only angular errors but linear errors 

also induce dgt). 

It was mentioned above that interference of surfaces or their clearance 

can be compensated by rotation of surface C 2 only. Therefore, &)=() 
-tr 

and dzt(:)=U and 

ds(1) -r 
+ ds (l) = dst2) 

-4 -tr 
+ dzi2) + ds(2) 

-9 

dn(1) -r 
+ dn(l) = dnc2) 

-9 -tr 
+ &i2) + dn(2) 

-9 

It was demonstrated in item 1.1 that 

(3.3.8) 

(3.3.9) 
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&$I = &#p) x p1 
-t.r - _ (3.3.10) 

where 

is a vector drawn from an arbitrary point N(2l of axis rotation to the con- 

tact point d2) . (Fig. 1.2.1). 

Then, (see item l.l), 

(3.3.11) 

Here: vector d$ (i> is similar to vector ,(i> and is directed along 

the axis of rotation according to the direction of rotation 

where t is time. 

(3.3.12) 

Let us compose following scalar products 

n.(ds:l) + dzi')) = n.(dzLz) + ds(2) + ds(2)) -r -9 
(3.3.13) 

n.(dci') + dpi')) = n.(dFif' + dFi2) + dni2)), (3.3.14) w. 

where n is the common unit normal of surfaces. 

Vectors ds(') and ds(2) -r --r belong to the common tangent plane T (Fig. 

3.3.1). Therefore, 

n.ds(i)=O (i=1,2) - -r 

Equations (3.3.13), (3.3.10) and (3.3.15) yield 

(3.3.15) 

(3.3.16) 

It is easy to be verified that both parts of equation (3.3.14) are 

equal to zero identically. Indeed, vectors d"ii) belong to the tangent 

plane and therefore 
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n.dn(i) = 0 - -r (3.3.17) 

It results from equation (3.3.11) that 

yln~f' = [IJ ,(')c]= 0 

Vector dcii) (i=l,Z) can be represented the expression 

dnci) = d6(i> x n 
-9 -9 - 

where d6(i> 
4 

is a vector represented by the angular error. 

Therefore 

".dz$) = b d$)p]= 0 

(3.3.18) 

(3.3.19) 

(3.3.20) 

Equation (3.3.16) is the basic equation for the determination of kinematical 

errors of gear drives. Its application will be demonstrated in the following 

items. 

3.4. Kinematical Errors of Spiral Bevel Gears Induced by Their Eccentricity 

Gear eccentricity occurs when a gear's geometrical axis does not coin- 

cide with its axis of rotation (Fig. 3.4.1). By rotation the geometrical axis 

of a gear generates a cylindrical surface of radius Ae. The vector of 

eccentricity Ae is represented by a vector of constant magnitude which rotates 

about gear axis. 

The initial position of vector As (the position at the beginning of 

motion) is given by the angle a and its current position by angle (0 + a) 

(Fig. 3.4.2). 

Fig. 3.4.2 shows coordinate systems Sl(xl,yl,zl) and S f rigidly 

connected with gear 1 and the frame; the coordinate system Sh is an auxiliary 

one which is also rigidly connected with the frame. The driving gear 1 rotates 

about axis zh. The position of .A:1 in coordinate system 5 is given by the 

angle al made by h-1 and axis x 1' The current position of A:1 in coordinate 
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THE GEOMETRCAL AXIS 

LTH’E AXIS Of ROTATION 

FIG. 3.4.1 

Cylinder Generated by Geometrical Axis of Eccentric Gear 
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r \ 

FIG. 3.4.2 

Coordinate Systems Associated with Gear 1 
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system Sf(or Sh) is defined by the angle ($1 +al). Vector As:') is 

represented by the matrix equation 

bekl)] = [La] [pe:l)] = 

i -siny cos 0 y 1 1 0 0 1 cos sinyl 0 Y1 II 
Aycos (G,+ a11 

-Aelsin(Ql+al) 

0 

Matrix equality (3.4.1) yields 

The vector of eccentricity of the driven gear 2 Ae(2) can be defined 

(3.4.1) 

(3.4.2) 

the same way. Fig. 3.4.3 shows coordinate systems S2 and Sf rigidly 

connected with gear 2 and the frame. Coordinate system S 
P 

is also rigidly 

connected with the frame. 

Vector Ae(2) is representedby the matrix equation 

ke$2j = [Lfd [Aei2)] = 

cos y 2 0 -siny 2 Ae2cos (+,+ a21 

0 1 0 Ae2sin(Q2+a2) 

siny 2 0 cos y 2 I[ O 1 (3.4.3) 

It results from matrix equality (3.4.3) that 

(3.4.4) 

Ae2cos(@2+a2)cosy2 

Ae2sin(Q2+a2) 

I 
Ae2cos(42+a2)siny2 

Kinematical errors induced by gear's eccentricities are defined by an 

equation similar to (3.3.16): 
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FIG 3.4.3 

Coordinate Systems Associated with Gear 2 
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(3.4.5) 

'11 where Ae. -f and A,eg) are represented by matrices (3.4.2) and (3.4.4); 

A@' (Fig. 3.4.3) is represented by matrix 

(3.4.6) 

Vector _pi2) represents the position vector of a point which belongs to the 

line of action and ?f represents the unit normal of the contacting surfaces 

at their point of tangency. 

Equations (3.4.5) and (3.4.6) yield 

WJ, = 
nxCAex +nyCAey+nzCAe 

Z 
-yc0sy2nx+(x~0~y2+ Zsiny2)ny-ysinY2nz (3.4.7) 

Here: CAex= Be:')-Aei2), CAe = Ae(1)-Ae(2),ZAeZ= AeL')- AeL2). Ihe sub- 
Y Y Y 

script "f" was dropped in equation (3.4.7). The unit normal was represented 

by equations (2.2.10) 

?f = sin$cif+ co~$~sinr~j~+ cos~,cos~~k~ = 

sinqcrf+ ~os$~ cos(B -$,) jf+sin(B -I$,) ,kf [ 1 = 

sin$cif+ cos$, [ cos(B -$lsinyl)jf+ sin(B- $lsinyl)kf -1 (3.4.8) 

Equations (3.4.7) by $l=O represent the surface unit normal at the point 

of intersection of the tooth surface with the generatrix of the pitch cone. 

Coordinates x,y,z of a current point of line action were represented: 

(a) by equations (2.2.25) for spiral bevel gears with geometry I; (b) by 

equations (2.6.4) for spiral bevel gears with geometry II. 

104 



In the process of meshing of one pair of teeth the angle of rotation 91 

changes in the interval [-IT/N~, R/N~], where 
N1 is the number of teeth 

of gear 1. Considering @,siny, as negligible the unit surface normal L I 
can be represented by the equation 

f?f = sin$cif + cosJlc(cos~~f+ sinB_kf) 

With the same assumption for $lsinyl it can be taken that 

Xf = 0, yf = 0, Zf = L 

Equations (3.4.7), (3.4.9) and (3.4.10) yield 

(3.4.9) 

(3.4.10) 

&,(9,1 = 
nxCAex+n CAe +nzCAe z - 

Lsiny2cosJlc cosB 

Here: 

nx.ZAex+nyCAey+nzZAe 
Z 

= alsin($l +al) +blcos($l +al) 

+a2sin($2 +a2) +b2cos(G2 +a2) 

Here: 

(3.4.11) 

(3.4.12) 

al = -AelcosqccosB ; bl = Ael(cosylsin$c - sinylcos$csinB) 

a2 = -Ae2cos@ccos$ ; b2 = -Ae2(cosy2sinqc +siny2cos+csin@) 

N1 
92 = "1% 

(3.4.13) 

It results from equations (3.4.12) that kinematical errors of spiral bevel 

gears can be represented as the sum of four harmonics. The period of two 

harmonics coincides with the period of revolution of gear 1; the period of 

the other two harmonics coincides with the period of revolution of driven 

gear (of gear 2). 

The function A$2(~l) as defined by equation (3.4.11) is a smoothed 

function. In reality this function breaks by changing teeth in meshing. 

This break can be discovered if the function A9, $1 is defined by equa- 

tion (3.4.7). 
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Equation (3.4.11) can be applied for spur gears, too. By Lsiny2 = r2, 

6 = 0, sinyl= siny2= 0 equations (3.4.11) and (3.4.12) yield: 

A@,($9 = 
A elsin($c - 9, - al) + A.e2sin($c + a2 + $1) 

r2cos VJ c 
, (3.4.14) 

where *2 is the pitch radius of gear 2. 

Parameters al and a2 influence the distribution of function 

A$,($,) in the positive and negative areas. For a drive with Nl = N2, 

a2 = 7r+a 1 and Ae 2 = Ae 1 the function A$,($,)! 0. In other words, kine- 

matical errors induced by eccentricities Ae 1 and Ae2 are compensated 

completely. 

3.5 Kinematical Errors Induced by Misalignment 

There are following kinds of misalignment (Fig. 2.2.2): (a) displace- 

ment of a gear in direction of positive or negative axis x f; (b) axial displace- 

ment of gear 1 in direction of its axis Oa; (c) axial displacement of gear 2 

in direction of axis Ob; (d) an error of the angle made by axes Oa and Ob. 

Let us suppose that gear 1 is displaced in the direction of negative 

axis xf by 

A s(l) = -AAi 
-9 -f 

Equations (3.3.16) and (3.5.1) yield 

(3.5.1) 

[qm(2)~(2)~] = - A:$), (3.5.2) 

It results from (3.5.2) that 

A@2(+d) = 
-AAsinqc 

-yc0sy2nx + (x cosy2 + 2 siny2)ny-ysiny2nz (3'5S3) 
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Here: 9, = $lsinyl= (p siny 2 2 is the angle of rotation of the generating 

gear; x,y,z are coordinates of the line of action represented by equations 

(2.2.25) and (2.6.4) for spiral bevel gears with geometry I and II, respec- 

tively. 

Now, let us consider a case when gear 1 is displaced in the direction 

of negative axis yf at 

As(')= _ AEj 
-4 -f (3.5.4) 

By analogy with equation (3.5.3) it will be 

AEn 
A@2(@d) = -ycosy2nx + (xcosy2+Zsiny )n 2 y-YsinY2nZ 

(3.5.5) 

The variation of the angle made by gear axes Oa and Ob can be represent- 

ed as a result of rotation of one of the gears about axis yf' 
for instance, 

gear 1. The vector of rotation is 

A6 = A6Jf (3.5.6) 

and the displacement of contact point is represented by equation 

As(l)= A6xp -q --’ (3.5.7) 

where p is the radius-vector drawn from of to the point of action. 

Kinematical errors induced by As (11 
-q 

are represented by equation 

(3.5.8) 

Equation (3.5.8) yields 

(z n x- xnZ)A6 
-yc0sy2nx+(~~0sy2+zsiny2)ny-ysinY2nz 

(3.5.9) 

Equations (3.5.3), (3.5.5) and (3.5.9) canbe simplified for spiral bevel 
gears with geometry II taking into account that in this case x = 0, 
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y=O (see equations (2.6.4)). 

Equations proposed in this item can be applied for approximate determina- 

tion of kinematical errors induced by incorrect methods of generation of spiral 

bevel gears and for determination of machine settings to compensate such 

errors. 

It was mentioned in item 2.1 that a correct meshing of spiral bevel gears 

can be gotten by coinciding three axes of instantaneous rotation. In reality 

these axes do not coincide and therefore kinematical errors represented by 

equation (3.5.9) appear by As equal to the sum of dedendum angles of the 

two gears. 

To compensate these errors corrections of machine settings for cutting 

the pinion are used. These corrections are pinion displacements represented by 
equation 

As(')= AEjf 
-9 

+ AL_kf, (3.5.10) 

where AE and AL are algebraic values. 

Equations (3.3.15) and (3.5.10) yield 

A@,(+,) = 

AEny+ALnZ 
(3.5.11) 

-Y ~0s Y2nx + (x cos y2 + zsiny )n 2 y-YsinY2nz 

To compensate kinematical errors (3.5.9) the following function 

f(+d) = 

AEn + ALnZ - (znx-xnz) A6 

-ycosy2nr + (xcosy2 + zsiny2)ny-ysinY2nz 
(3.5.12) 

must be minimized. 

Let us represent function f(@,) as a difference of two functions as 

follows: 
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f((t$ = fl($d) - f2Wl (3.5.13) 

Here 

f,(t$ = 
(z n x -x nz> A6 

-ycosy2nx + (x cosy + zsiny )n -ysiny2nZ (3.5.14) 2 
2 Y 

is the function of errors, and 

f,(t$ = 
AEn +ALnZ 

-ycosy2nx + (x cosy (3.5.15) 
2 + zsiny )n -ysiny2nZ 

2 Y 

is the compensating function which is applied in order to compensate the 

kinematical errorsinducedby A6 as aresultofanincorrectmethodofgeargeneration. 

dfl Let us define derivatives - df2 
d+d and K at the main contact point at 

which y=O, x=0, z=L for gears with geometry I and geometry II. 

Geometry I. Projections of the surface unit normal were represented by 

equations (2.2.10) 

n 
X 

= sinqc 

nY 
= cosJlcsin(Bd- qd+$d) (3.5.16) 

n 
Z 

= cosqJccos(ed - qd+@d) 

where JJJ c' 'd and qd are constant parameters and ed-qd=90=B. 

Coordinates of contact point were represented by equations (2.2.25) 

sin(qd - ed) 

d cos(B - 4,) 3 
sinQccosQc 

cos(B - $,I 
Y= tan $, 

(3.5.i7) 

bdsinBd sin@ - $,I 

z = cos(B -$I,) + tanQc x 
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At the main contact point @,=O, x=y=O, z=L. Equations (3.5.16) and 

(3.5.17) yield that at the main contact point 

dnX 
dn dn 

-= 
d'd 

0, -Y = cosJlcsinB, $ = 
d9d 

- cos ljJccos B (3.5.18) 
d 

dx bdsinBd 
-= 
d'd cos2B 

sin$,co~$~ = ---& sinQccosJIc (3.5.19) 

(3.5.20) 

dz -= 
d'd 

- Lsin2$ctanfi (3.5.21) 

df2 At the main contact point the derivative - 
d'd 

is represented by equation 

df2 
dzn 
d9d 

-dxn 
x ded Z 

L s1n Y2nY 

n -3-n 
X 

+ dXny)+siny2(i;ny +z$d- $6 
d(bd X d@d 

Lsin2y2n2y 

Equations (3.5.22), (3.5.16) and (3.5.19)-(3.5.21) yield 

df2 tan BtanQc 

- = - siny2cos B d9d 
A6 

Equation (3.5.15), (3.5.16) and (3.5.19)-(3.5.21) yield that 

dn 
dnZ 

dfl 
AEd+AL- 

d d'd -= = AEsinB-ALcosB 

d'd L sln Y2nY 
Lsiny2cos B 

(3.5.23) 

(3.5.24) 

Kinematical errors will be compensated in the neighborhood of the main 

contact point if 
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af afl af2 -- K = a+, x = O 

This requirement is satisfied by 

AEslnBiALcosB + A6tanBtan$, = 0 

(3.5.25) 

(3.5.26) 

A requirement that functions fl(@d) and f2($d) must be equal at the 

main contact point yields 

AEcosB+ALsinB 
L - A6tanQc = 0 (3.5.27) 

It results from equations (3.5.26) and (3.5.27) that 

AE tanQccos 2 B 
-= 

L cos B 
A6 (3.5.28) 

LLL= 2tanqcsin BA6 (3.5.29) 

Equations (3.5.28) and (3.5.29) provide approximate magnitudes of 

machine settings for spiral bevel gears. 

For spiral bevel gears with geometry II functions (3.5.14) and (3.5.15) 

will be the following ones. 

A6 nx 
f2(+d) = . A6 

sin Y2ny = siny2cosB 

df2 -= - 
cotqdtanqc 

d'd cos B A6 

AEn +ALnZ AEcosB+ALsin$ 
fl((i$ = zsiny2ny = Lsiny2cosf3 

(3.5.30) 

(3.5.31) 

(3.5.32) 
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dfl l - = 
d'd Lsiny2 

FL (co;;s~nS- 1) - AEcotB] 

Requirements that at the main contact point 

dfl df2 
f,($$ =f2(t$ 9 s=&j$ 

yield 
AE - = (COSB- sinBtanqd)tan$c A6 L 

AL - = (sinS+cosStanqd)tanQc A6 L 

4. CONCLUSION 

a. 

b. 

C. 

d. 

(3.5.33) 

(3.5.34) 

(3.5.35) 

General kinematic relations for conjugate gear tooth surfaces are proposed. 

The proposed equations relate the motions of: (a) points of contact and 

(b) surface unit normals. The equations above are applied to define: 

(a) relations between principal curvatures and directions for two gear 

tooth surfaces which are in mesh, (b) kinematical errors induced by 

errors of manufacturing and assemblage. 

Two mathematical models of geometry of spiral bevel gears are proposed. 

Models above correspond to the motion of contact point across and along 

the tooth surface. 

The bearing contact of spiral bevel gears for both models is determined. 

A computer program for this has been worked out. 

Method to investigate kinematical errors of spiral bevel gears is worked 

out. 
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LIST OF SYMBOLS 

Section 1 

a half the length of major axis 

A 

b 

B 

C 

f i 

gl 
= +I' ^ #' 

g2 
= KI'2' - $1 

'i 

[Lij 1 

MO 

[Mij I 

.(i> 
-abs 

ni(“i ‘i> 

(,(i) ,(i> .(i) 

.;2, 
-y “Z 1 

% 
l (il 

Etr 
N 

N1 

N2 

N' 

auxiliary function used in Eq. (1.7.30) represented by 
Eq. (1.7.31) 

half the length of the minor axis 

auxiliary function defined by Eq. (1.7.32) 

shortest distance between axis of rotation 

elastic deformation of surface Ci 

auxiliary function to determine size of contact ellipse 

auxiliary function to determine size of contact ellipse 

distance of point N from tangent plane t-t 

projection transformation matrix 

point of contact of tooth surfaces 

coordinate transformation matrix; transformation from 

'j to 'i 
absolute velocity of the end of unit normal 

unit normal vector to surface Ci 

projections of n(i) in coordinate system Sf 

relative velocity of the end of unit normal vector ni 

transfer velocity of the end of unit normal vector ni 

a point on surface C 1 
new position of point N after displacement 

final position of point N after displacement and 
elastic deformation 

point on surface 2 

final position of N' after displacement and elastic 
deformation 
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N. normal vector to surface C. 
-1 1 

ri("i 'i> position vector describing surface Ci with surface 
coordinate (ui,Bi) 

'i('i Yi 'i) coordinate system i 

t-t tangent plane to surface Cl and C2 

,(i) 
-abs absolute velocity of contact point on surface Ci 

,(i> 

it il 

relative velocity of contact point on surface Ci 

-tr transfer velocity of contact point on surface Ci 

,(i> 
1 transfer velocities of points on surface Ci in 

coordinate system 1 

p) = p1 -p) 
1 

(x~i) y;ii r:il: 

relative velocity of point 2 with respect to point 1 

Cartesian coordinates of contact point on surface C. 
as expressed in coordinate system Sf 1 

&I . (1) angle made by axis n and 1 

p -ia angle made by axis n and iI 

Y angle of crossing of axis of rotation 

6 approach of surface Cl and C2 

% displacement of surface Cl when Cl and C2 are in 
meshing 

62 
(i(l) 
-1 

. Cl)) 
' %I 

. (21 
(AI . (2) 

' t11 ) 

5 
(11 KI';' 

(2) p> 
KI II 

displacement of surface C2 

unit vectors along principal direction of surface Cl 

unit vector along principal direction of surface C2 

principal curvatures of surface Cl 

principal curvatures of surface C2 

Ku) = Ku) (11 
E I +KII auxiliary function 

p> = p1 (2) 
& II +KII auxiliary function 

P distance of points N and N' from point MO 

0 angle between . (11 
&I and i$) 
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c. 1 

'i 
(i> 

@f 

surface i 

angle of rotation of gear i 

angular velocity of surface C. 1 

Section 2 (i= 1,2) (d= f,k) 

Cl> 
a31 

Cl> 
a32 
b(l) 

3 

bd 
,(i) 

,(i> 

[Lij 1 

[“i j 1 

"f 
Cdl 

Nf 

qd 
Cd) 

'f 

'd 
,(i> 

sa (Xa'Ya' Za> 

SC CXc~Yc~ zc> 

'h 

'i 

Ud 

auxiliary function defined by Eq. (2.4.11) 

auxiliary function defined by Eq. (2.4.12) 

auxiliary function defined by Eq. (2.4.13) 

a parameter of tool setting 

auxiliary function used to compute the principal direction 
of surface C i 

auxiliary function used to compute the principal curvatures 
of surface C. 

1 

projection transformation matrix 

coordinate transformation matrix; transformation from S. 
to Si 3 

surface unit normal 

surface normal to surface d 

a parameter of tool setting 

locus of contact point on surface d 

a parameter of tool setting 

auxiliary function used to compute principal curvature of 
surface C i 

auxiliary coordinate system 

coordinate system used to represent surface C in 
geometry II F 

coordinate system rigidly connected with frame 

coordinate system rigidly connected with gear i 

generating surface coordinate 
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WI 
vf 

VW2l 
f 

(X,> Yf’ Zf> 

(x(dl ,yCdl ,zIdl 
f f f 

B 

'i 

'd 
. Cd) 
i1 

. (dl 
51 

u(d) 

,(i> 

relative velocity of a contact point on surface CF with 
respect to contact point on surface Cl 

relative velocity of a contact point on surface CK with 
respect to contact point on surface C2 

coordinates of the line of action of surface C i 
components of the equations of the generating surface C 

Cdl 
90° - (EId- q,) see Eq. (2.2.24) 

half of pitch cone angles of gear i 

generating surface coordinate 

unit vector representing the first principal direction of 
surface d 

unit vector representing the second principal direction 
of surface d 

principal curvature I of surface d 

principal curvature of II of surface d 

angle between i Cd) 
I and D i positive clockwise 

tool surface d 

generated surface of pinion and gear 

0 d - (qd- 4,) auxiliary function 

angle of rotation of generating surface about axis x f 
angle of rotation of gear i 

shape angle of head-cutter blades 

relative angular velocity of contact point on surface d 
with respect to contact point on surface 1 

angular velocity of surface d 

angular velocity of gear i 
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Section 3 

AE 

Ae ci> 

AL 

Mi 
(i> 

Ef 

AQ 

Qi 
(i> 

Ef 
ds(i> 

-9 
a. 

1 

A6 

gear displacement 

machine setting 

eccentricity vector of gear i 

machine setting 

contact point on surface Ci 

unit normal vector of surface Ci 

vector of errors 

components of vector of errors 

position vector of point on surface Ci 

displacement vector of contact point due to kinematical errors 

angular position of eccentricity vector 

sum of dedendum angles of gears 1 and 2 

surface i 

kinematical error function 

theoretical value of gear 2 angle of rotation 

actual value of gear 2 angle of rotation 
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